TK

cho đường tròn tâm O bán kính R. Từ 1 điểm M ở ngoài đường tròn, kẻ hai tiếp tuyến MA và MB với đường tròn. Qua A kẻ đường thẳng song song với MO cắt đường tròn tại , đường thẳng ME cắt đường tròn tại F, đường thẳng AF cắt MO tại N, H là giao điểm của MO và AB. a) chứng minh: tứ giác MAOB nội tiếp đường tròn.

b)chứng minh: MA.AB=2MH.AO

DA
21 tháng 4 2021 lúc 9:57

undefined

a) Chứng minh tứ giác MAOB nội tiếp đường tròn
Xét tứ giác MAOB có: \(\widehat{MAO}=90\text{°}\) (MA là tiếp tuyến của (O)); \(\widehat{MBO}=90\text{°}\) (MB là tiếp tuyến của (O))
→ \(\widehat{MAO}+\widehat{MBO}=180\text{°}\)
mà \(\widehat{MAO}\) và \(\widehat{MBO}\) là hai góc đối nhau
→ Tứ giác MAOB nội tiếp (dhnb) (đpcm)

b) Chứng minh MA.AB = 2MH.AO
Ta có: OA = OB (A, B ∈ (O))
→ O thuộc đường trung trực của AB (1)
Lại có: MA = MB (Tính chất hai tiếp tuyến cắt nhau)
→ M thuộc đường trung trực của AB (2)
Từ (1) và (2) → OM là đường trung trực của AB
→ OM ⊥ AB tại H và H là trung điểm của AB
→ \(\widehat{MHA}=90\text{°}\) và AB = 2AH
Xét ∆MAO và ∆MHA có: \(\widehat{MAO}=\widehat{MHA}=90\text{°}\)\(\widehat{M}\) chung
→ ∆MAO ∼ ∆MHA (g.g) → \(\dfrac{MA}{MH}=\dfrac{AO}{HA}\) (cặp cạnh tương ứng)
→ MA.HA = MH.AO
→ 2MA.HA = 2MH.AO
Mà AB = 2AH (cmt) → MA.AB = 2MH.AO (đpcm)

Bình luận (2)

Các câu hỏi tương tự
PB
Xem chi tiết
SS
Xem chi tiết
HT
Xem chi tiết
TD
Xem chi tiết
TD
Xem chi tiết
MA
Xem chi tiết
LA
Xem chi tiết
SD
Xem chi tiết
QT
Xem chi tiết