Cho đường tròn tâm o có bán kính OA = 11 cm lấy m thuộc OA sao cho om = 7 cm qua m vẽ dây CD = 18 cm kẻ oh vuông góc với CD H thuộc CD tính OH,HM
Cho đường tròn tâm O có bán kính OA=11cm. Lấy M thuộc OA sao cho OM=7cm. Qua M vẽ dây CD=18 cm. Kẻ OH vuông góc (H thuộc CD).
a) Tính OH, HM b) Tính MC, MD
BÀI TOÁN CỰC KHÓ ĐÂY! GIẢI ĐƯỢC THƯỞNG ĐIỂM 10 !
Cho đường tròn ( O;R ). Vẽ hai bán kính OA và OB. Trên các bán kính OA, OB lần lượt lấy các điểm M,N sao cho OM = ON. Vẽ dây CD đi qua M và N ( M nằm giữa C và N).
a) CM: CM=DN
b)Giả sử góc AOB = 90° . Hãy tính OM theo R sao cho CM = MN = CD.
Cho đưong tròn tâm O có bán kính R, đường kính AB. Qua điểm A kẻ đường thẳng d vuông góc AB tại A. Trên d lấy điểm C sao cho AC >R. Lấy điểm M thuộc dưong tròn (O) sao cho OM vuông góc với CM tại M. a) Chứng minh 4 điểm A, C, O, M thuộc cùng một đường tròn. b) Gọi K là giao điểm thứ 2 của BC với đường tròn (O). Chứng minh: BC BK = 4R mũ 2 c) Chứng minh: MB // OC d) Chứng minh: góc CMK = gócMBC
GIÚP MIK VỚI Ạ
Cho nửa đường tròn tâm O, đường kính AB= 2r và 1 dây CD (C thuộc AD)
a) Hạ AP và BQ vuông góc với CD.c/m CP=DQ
b) Cho AC= r và góc COD =90 độ. Tính CD và CB theo r
c) Cho AP=48 cm, BQ=120cm, biết PQ =154 cm. Tính bán kính đường tròn
Cho đường tròn (O; R). Vẽ hai bán kính OA, OB. Trên các bán kính OA và OB lần lượt
lấy các điểm M và N sao cho OM = ON. Vẽ dây CD đi qua M và N (M nằm giữa C và N).
a) Chứng minh rằng: CM = DN.
b) Giả sử GOC AOB ̂= 90 DO
. Tính OM theo R sao cho: CM = MN = ND.
1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn
2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ b) CH . HD = HB . HA c) Biết OH = R/2. Tính diện tích tam giác ACD theo R
3/ Cho tam giác MAB, vẽ đường tròn (O) đường kính AB cắt MA ở C, cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM:
a) CP = DQ b) PD . DQ = PA . BQ và QC . CP = PD . QD c) MH vuông góc AB\
4/ Cho đường tròn (O;5cm) đường kính AB, gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao? b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O') d) Tính độ dài đoạn HI
5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R
6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật
7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)
8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
Cho đường tròn (O; R) đường kính AB. Trên các bán kính OA, OB lần lượt lấy các điểm M và N sao cho OM = ON. Qua M, N vẽ các dây cung CD, EF song song với nhau( C, E thuộc nửa đường tròn đường kính AB).
a) CMR: tứ giác CDFE là hình chữ nhật
b) Cho CM = 2/3 R, góc giữa CD và OA= 60 độ. Tính diện tích tứ giác CDFE
Cho (O,R) và dây CD không đi qua tâm. Lấy M thuộc tia đối của tia CD. Qua M kẻ 2 tiếp tuyến MA, MB ( với A, B là 2 tiếp điểm) với đường tròn và A thuộc cung CD lớn. Gọi I là trung điểm của CD. Nối BI cắt (O) tại E. OM cắt AB tại H
a, CM : M, A, O, I, B cùng thuộc 1 đường tròn.
b, CM: AE//CD.
c, Tìm vị trí của M để MA vuông góc với MB
Giúp =)