cho đường tròn tâm I nội tiếp tam giác ABC(ac>ab), M,N lần lược là tiếp điểm của AB, BC với đường tròn I. K là giao điểm của tia AI với MN. Cho AC=10. chứng minh tam giác ACK vuông mọi người giúp mình với
cho tam giác ABC ngoại tiếp đường tròn tâm i gọi D ,E ,F lần lượt là các tiếp điểm của các cạnh BC CA AB với đường tròn tâm i .gọi m là giao điểm của AB và BC, AD cắt đường tròn tâm i tại n .gọi k là giao điểm của AC và EF .a)Chứng minh rằng IKND là tứ giác nội tiếp .b) chứng minh rằng MN là tiếp tuyến của đường tròn tâm I.
Cho tam giác ABC (AC>AB). Đường tròn tâm I nội tiếp tam giác đó và tiếp xúc với AB,BC tại D,E. Gọi M,N lần lượt là trung điểm AC,BC. Gọi K là giao điểm của MN và AI. CMR: 4 điểm I,E,K,C cùng nằm trên một đường tròn
cho tam giác ABC nội tiếp (O) bán kính R(AB<AC) đường tròn tâm I đường kính OA cắt AB, AC lần lượt tại M và N.và M, N lần lượt là trung điểm AB, AC. Kẻ dây cung AE của (I) đường kính OA song song với MN,.Gọi F là giao điểm của MN và HE.chứng minh F là trung điểm NM
Cho tam giác ABC cân tại A. Gọi D, E lần lượt lầ trung điểm của AB, AC. M là điểm chuyển động trên đường thẳng DE. Đường tròn tâm O tiếp xúc với AB, AC theo thứ tự tại B,C.Đường tròn đương kính OM cắt đường tròn tâm O tại N,K. Xác định vị trí của điểm M để bán kính đường tròn ngoại tiếp tam giác ANK nhỏ nhất.
Cho tam giác ABC có AB > AC > BC. trên các cạnh AB, AC lấy lần lượt hai điểm M và N Sao cho BM = BC = CN. Gọi I là tâm đường tròn nội tiếp tam giác ABC. AI cắt đường tròn ngoại tiếp các tam giác ANM và ABC lần lượt tại E và F.
a) Chứng minh tứ giác AMIC nội tiếp.
b) So sánh IE và IF
Bài 1: Cho tam giác ABC nhọn ( AB<AC) nội tiếp đường tròn (O). Gọi H là hình chiếu vuông góc của A trên BC. Gọi M và N lần lượt là hình chiếu vuông góc của B và C trên đường kính AD của đường tròn(O)
a) CM tứ giác ABHM,AHNC nội tiếp
b) CM tam giác HMN đồng dạng tam giác ABC
c) Chứng minh HM vuông góc với AC
d) Gọi I là tủng điểm của BC. CM I là tâm đường tròn ngoại tiếp tam giác HMN
Bài 2:Cho đường tròn (O) đường kính AB=2R, Cl à trung điểm của OA và dây MN vuông góc với OA tại C. K là điểm di động trên cung nhỏ MB và H là giao của AK và MN
a) CM tứ giác BCHK nội tiếp
b) Chứng minh tam giác MBN đều
c) Tìm vị trí điểm K trên cung nhỏ MB sao cho KM+KN+KB đạt giá trị lớn nhất và tính giá trị lớn nhất đó theo R
Cho tam giác ABC có AC > AB. Đường tròn tâm I nội tiếp tam giác ABC tiếp xúc với AB và BC lần lượt tại D và E. Gọi M và N theo thứ tự là trung điểm của cạnh AC và BC. Gọi K là giao điểm của MN và AI. Gọi H là giao điểm của DE và CI. Chứng minh rằng:
a) Bốn điểm I, E, K, C cùng thuộc một đường tròn.
b) Ba điểm D, E, K thẳng hàng.
c) Bốn điểm A, H, K, C cùng thuộc một đường tròn.
Cho tam giác ABC nội tiếp đường tròn (O;R).Qua tâm O vẽ các đường thẳng vuông góc với BC,AC lần lượt tại H,K.Các đường thẳng này lần lượt cắt đường tròn tại M,N
1.chứng mình 4 điểm O,H,C,K cùng thuộc một đường tròn
2.chứng minh MN là trung trực của IC
3.chứng minh M là tâm đường tròn ngoại tiếp tam giác IBC. Tính bán kính đường tròn ngoại tiếp tam giác IBC theo R khi góc BAC=120°