PB

Cho đường tròn (O;R) và điểm M ở ngoài đường tròn sao cho OM=8/5 R . Kẻ các tiếp tuyến MA, MB với đường tròn (O) (A, B là các tiếp điểm), đường thẳng AB cắt OM tại K.

c) Kẻ đường kính AN của đường tròn (O). Kẻ BH vuông góc với AN tại H. Chứng minh MB.BN = BH.MO .

CT
22 tháng 9 2017 lúc 10:58

Đề kiểm tra Toán 9 | Đề thi Toán 9

c) Ta có: ∠(ABN ) = 90 0 (B thuộc đường tròn đường kính AN)

⇒ BN // MO ( cùng vuông góc với AB)

Do đó:

∠(AOM) = ∠(ANB) (đồng vị))

∠(AOM) = ∠(BOM) (OM là phân giác ∠(AOB))

⇒ ∠(ANB) = ∠(BOM)

Xét ΔBHN và ΔMBO có:

∠(BHN) = ∠(MBO ) = 90 0

∠(ANB) = ∠(BOM)

⇒ ΔBHN ∼ ΔMBO (g.g)

Đề kiểm tra Toán 9 | Đề thi Toán 9

Hay MB. BN = BH. MO

Bình luận (0)

Các câu hỏi tương tự
LV
Xem chi tiết
PB
Xem chi tiết
DD
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
NM
Xem chi tiết
MA
Xem chi tiết
SN
Xem chi tiết
H24
Xem chi tiết