UN

Cho đường tròn (O;R), và các tiếp tuyến AB,AC căt nhau tại A nằm ngoài đường tròn(B,C là các tiếp điểm).Gọi H là giao điểm của BC và OA
a)CM: OAvuông góc với BC và OH.OA=R^2
b)Kẻ đường kính BD của đường tròn (O) và đường thẳng CD vuông góc với BD (K thuộc BD).CM OA song song với CD và AC.CD=CK.AO
c)Gọi I là giao điểm của AD và CK. CM:tam giác BIK và tam giác CHK có diện tích bằng nhau.

H24
22 tháng 12 2018 lúc 22:41

O A B C H D K I

a, Vì OB = OC ( =R )

        AB = AC (tiếp tuyến)

=> OA là trung trực BC

=> OA vuông góc BC
Vì AB là tiếp tuyến (O)

\(\Rightarrow OB\perp AB\)

=> t/g OAB vuông tại B

Xét t/g OAB vuông tại B có BH là đường cao 

=>\(OH.OA=OB^2=R^2\)(hệ thức lượng)

b,* Xét \(\Delta\)BCD có : OB = OC = OD (=R)

=> \(\Delta\)BCD vuông tại C

=> \(BC\perp CD\)

Mà  \(BC\perp OA\)

=> CD // OA 

Bình luận (0)

Các câu hỏi tương tự
UN
Xem chi tiết
NM
Xem chi tiết
HL
Xem chi tiết
NH
Xem chi tiết
PB
Xem chi tiết
QT
Xem chi tiết
VL
Xem chi tiết
DP
Xem chi tiết
TH
Xem chi tiết