a/ Vì DC, Ax, By là các tiếp của tiếp của đường tròn và cắt nhau tại các điểm tương ứng trên hình vẽ nên ta có
\(\hept{\begin{cases}AC=CM\\BD=MD\end{cases}}\) . Dễ dàng chứng minh góc COD = 90 độ
Áp dụng hệ thức về cạnh trong tam giác vuông , ta có \(MC.MD=OM^2\) hay \(AC.BD=R^2\)
b/ Ta có \(C_{OCD}=OC+OD+CD\) . Để chu vi tam giác OCD nhỏ nhất thì CD nhỏ nhất
Mà CM.MD = R2 không đổi nên CM+MD = CD đạt giá trị nhỏ nhất khi CM = MD
Khi đó M là điểm nằm giữa cung AB trên mặt phẳng chứa C và D.