Chương III - Góc với đường tròn

H24

Cho đường tròn (O) và điểm A nằm ngoài đường tròn đó.Vẽ tiếp tuyến AB với đường tròn (B là tiếp điểm).Kẻ BH vuông góc AO (H thuộc AO).Trên tia đối của HB lấy C sao cho HB=HC.CMR:

1)C thuộc đường tròn (O) và AC là tiếp tuyến của (O)

2)Vẽ cát tuyến AMN với đường tròn (O) (AM<AN;tia AM nằm giữa 2 tia AO và AC).CM:AM.AN=AH.AO

3)Gọi I là trung điểm của MN.Tia CI cắt đường tròn (O) tại K.CM:BK//MN

NT
17 tháng 1 2022 lúc 23:23

1: Xét ΔOBC có 

OH là đường cao

OH là đường trung tuyến

Do đó: ΔOCB cân tại O

hay C thuộc đường tròn(O)

Xét ΔOBA và ΔOCA có 

OB=OC

AB=AC

OA chung

Do đó: ΔOBA=ΔOCA

Suy ra: \(\widehat{OBA}=\widehat{OCA}=90^0\)

hay AC là tiếp tuyến của (O)

2: Xét ΔABM và ΔANB có 

\(\widehat{ABM}=\widehat{ANB}\)

\(\widehat{BAM}\) chung

Do đó: ΔABM\(\sim\)ΔANB

Suy ra: AB/AN=AM/AB

hay \(AB^2=AM\cdot AN\left(1\right)\)

Xét ΔOBA vuông tại B có BH là đường cao

nên \(AH\cdot AO=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AN=AH\cdot AO\)

Bình luận (0)

Các câu hỏi tương tự
QT
Xem chi tiết
DA
Xem chi tiết
H24
Xem chi tiết
HN
Xem chi tiết
HN
Xem chi tiết
HN
Xem chi tiết
HN
Xem chi tiết
TT
Xem chi tiết
QX
Xem chi tiết