Cho đường tròn tâm O và đưong thắng d không giao nhau. Kẻ OH vuông góc với đường thẳng d tại H. Lấy điểm A thuộc tia đối của tia OH (A nằm ngoài đường tròn và OA < OH). Từ A kẻ tiếp tuyến với đường tròn (O) tại tiếp điểm M cắt d tại B. Từ B kẻ tiếp tuyển thứ hai với đường tròn (O) tại tiếp điểm N. a) Chứng minh rằng: Năm điểm H, B, M, O, N cùng thuộc một đường tròn. b)Chứng minh: HO là phân giác của MHN c) Đường thẳng BN lần lượt cắt HM, HO theo thứ tự tại P, Q. Chứng minh: QP.HN = HP.QN và QP.BN QN.BP d) Trên BN lấy điểm C sao cho HC = CN. Chứng minh: HC đi qua trung diểm của AB