Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

PB

Cho đường tròn (O; R) và dây BC cố định không đi qua tâm. Trên tia đối của tia BC lấy điểm A (A khác B). Từ A kẻ hai tiếp tuyến AM và AN với đường tròn (O) (M và N là các tiếp điểm). Gọi I là trung điểm của BC.

3) Đường thẳng qua M và vuông góc với đường thẳng ON cắt (O) tại điểm thứ hai là P. Xác định vị trí của điểm A trên tia đối của tia BC để  AMPN là hình bình hành.

CT
23 tháng 9 2019 lúc 12:16

Ta có AN  NO, MP NO, M AN => AN // MP

Do đó AMPN là hình bình hành ó AN = MP = 2x

Tam giác ∆ANO đồng dạng với ∆NEM =>  A N N E = N O E M = > N E = 2 x 2 R  

TH 1.NE = NO – OE =>  2 x 2 R = R − R 2 − x 2 ⇔ 2 x 2 = R 2 − R R 2 − x 2  

Đặt  R 2 − x 2 = t , t ≥ 0 ⇒ x 2 = R 2 − t 2 .

PTTT 2 ( R 2 − t 2 ) = R 2 − R t ⇔ 2 t 2 − R t − R 2 = 0 ⇔ 2 t = − R t = R  

Do  t ≥ 0 ⇒ t = R ⇔ R 2 − x 2 = R ⇔ x = 0 ⇒ A ≡ B  (loại)

TH 2 NE = NO + OE =>  2 x 2 R = R + R 2 − x 2 ⇔ 2 x 2 = R 2 + R R 2 − x 2  

Đặt R 2 − x 2 = t , t ≥ 0 ⇒ x 2 = R 2 − t 2 .

PTTT 2 ( R 2 − t 2 ) = R 2 + R t ⇔ 2 t 2 + R t − R 2 = 0 ⇔ 2 t = R t = − R  

Do t ≥ 0 ⇒ 2 t = R ⇔ 2 R 2 − x 2 = R ⇔ x = R 3 2 = > A O = 2 R  (loại)

Vậy A thuộc BC, cách O một đoạn bằng 2R thì AMPN là hbh

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
NA
Xem chi tiết
BN
Xem chi tiết
DK
Xem chi tiết
PB
Xem chi tiết
GB
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết