Cho đường tròn (O; R) và dây BC cố định (BC không qua O). Gọi A là điểm chính giữa cung nhỏ BC. Điểm E thuộc cung lớn BC. Nối AE cắt BC tại D. Hạ CH vuông góc AE tại H, CH cắt BE tại M. Gọi I là trung điểm của BC.
1. Chứng minh bốn điểm A, I, H, C thuộc một đường tròn.
2. Chứng minh khi E chuyển động trên cung lớn BC thì tích AD.AE không đổi.
3. Chứng minh đường tròn ngoại tiếp tam giác BED tiếp xúc với AB.
bạn vẽ hình ra sẽ dễ hơn đấy
vẽ ra mình giải cho