Cho BC là dây cung cố định của đường tròn (O;R) ( BC khác 2R ). A là điểm chuyển động trên cung lớn BC sao cho tam giác ABC nhọn. Các đường cao BD, CE của tam giavs ABC cắt nhau tại H.
a) Chứng minh A, D, H, E cùng thuộc một đường tròn và AH > DE
b) K là trung điểm BC. Chứng minh AH// OK
c) Xác định vị trí của điểm A để diện tích tam giác ABC là lớn nhất
GIẢI NHANH GIÚP MIK VS NHÉ
Cho đường tròn (O;R) và dây BC cố định (BC<2R) . A là điểm di chuyển trên cung lớn BC ( A khác B,C) .Gọi M là điểm chính giữa cung AC , H là hình chiếu vuông góc của M trên AB. Xác định vị trí của A trên cung lớn BC để đoạn CH có độ dài lớn nhất
Cho BC là dây cung cố ddingj của đường tròn (O;R) (BC # 2R) . A là điểm chuyển động trên cung lớn BC sao cho tam giác ABC nhọn. Các đường cao BD, CE của tam giác ABC cắt nhau tại H.
a, Chứng minh rằng : A, D, H, E cùng thuộc một đường tròn và AH > DE
b, K là trung điểm của BC
Chứng minh rằng: AH // OK
c, Xác định vị trí của điểm A để diện tích tam giác ABC lớn nhất
cho đường tròn (O;R) và cung BC cố định(BC không đi qua O).A là một điểm di động trên cung lớn BC sao cho tam giác ABC nhọn các đường cao AD BE CF đồng quy tại H. CÁC đường thẳng BE;CF đường tròn tâm O tại điểm thứ 2 là Q và P .Xác định vị trí của A trên cung BC để chu vi tam giác DEF có giá trị lớn nhất
Cho đường tròn tâm O bán kính R và 1 dây cung BC cố định. A là điểm di động trên cung lớn BC. Gọi I là trung điểm AC.
a/ Chứng minh: I di động trên 1 đường tròn cố định
b/ Qua I vẽ đường thẳnd vuông góc với AB. Chứng minh: d luôn đi qua 1 điểm cố định
c/ Xác định vị trí A để diện tích tam giác ABC lớn nhất
d/ Trong tâm G tam giác ABC di động trên 1 đường cố định
Cho BC là dây cung cố định của đường tròn tâm O bán kính R (BC<2R). A là một điểm di chuyển trên cung BC. M là một điểm di chuyển trên day AC sao cho AC = 3AM. Vẽ MNvuông góc với AB 9 N thuộc AB). Xác định vị trí của A để độ dài CN lớn nhất.
Cho đường tròn (O; R) và dây cung B C = R 3 cố định. Điểm A di động trên cung lớn BC sao cho tam giác ABC nhọn. Gọi E là điểm đối ứng với B qua AC và F và điểm đối ứng với C qua AB. Các đường tròn ngoại tiếp các tam giác ABE và ACF cắt nhau tại K (K không trùng A). Gọi H là giao điểm của BE và CF.
b) Xác định vị trí điểm A để diện tích tứ giác BHCK lớn nhất, tính diện tích lớn nhất của tứ giác đó theo R.
Cho (O), bán kinh R và một dây cung BC cố định, A là một điểm di động trên cung lớn BC sao cho tam giác ABC nhọn. Các đường cao AC, BE, CF của tam giác ABC đồng quy tại H. Các đường thẳng BE và CF cắt đường tròn tâm O tại điểm thứ 2 lần lượt là Q và P
1, Chứng minh B, F, E, C cùng thuộc một đường tròn
2, Chứng minh các đường thẳng PQ, EF song song với nhau
3, Gọi I là trung điểm của BC. Chứng minh góc FDE = 2 lần góc ABE và góc FDE bằng góc FIE
4, Xác định vị trí của điểm A trên cung lớn BC để chu vi tam giác DEF có giá trị lớn nhất
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O, BC khác đường kính nằm cố định trên đường tròn, A thay đổi trên cung lớn BC. Tìm ra vị trí của điểm A sao cho:
a, Diện tích tam giác ABC đạt giá trị lớn nhất
b, Chu vi tam giác ABC đạt giá trị lớn nhất