HQ

Cho đường tròn (O; R), đường kính AB. Vẽ tiếp tuyến Ax, trên tiếp tuyến Ax lấy điểm M. Vẽ tiếp tuyến MC ( C là tiếp điểm). Kẻ CH, CQ vuông góc lần lượt với AB, AM (H thuộc AB, Q thuộc AM).
1) Chứng minh tứ giác AMCO nội tiếp.
2) Gọi K là giao điểm của MO và AC. Chứng minh Q, K, H thẳng hàng.
3) a) BM cắt CH tại N và (O) tại E. Chứng minh KN // AB.
    b) Vẽ đường kính CD, MD cắt AC tại I. Đường tròn ngoại tiếp tam giác MCI cắt OC tại F. Biết góc AOC = 120 độ. CMR: MF / ID = căn 3.


Các câu hỏi tương tự
HQ
Xem chi tiết
TL
Xem chi tiết
LN
Xem chi tiết
PH
Xem chi tiết
NA
Xem chi tiết
PC
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
LQ
Xem chi tiết