MV

Cho đường tròn O đường kính AB=2R. Vẽ dây BD=R. Trên tia đối của tia BA lấy điểm C sao cho BC = R. Qua C vẽ đường thẳng vuông góc với AC cắt AD tại M.

a) Chứng minh tứ giác BCMD nội tiếp

b) CM: AD. AM = AB. AC

c) tính theo R diện tích hình viên phân giới hạn bởi cung nhoe BD và dây BD của đg tròn O

TM
21 tháng 5 2022 lúc 14:30

a. Ta có : \(\hat{BDM}=90^o\) (kề bù với \(\hat{BDA}\) nội tiếp chắn nửa đường tròn).

\(\hat{BCM}=90^o\left(gt\right)\)

Vậy : BCMD nội tiếp được một đường tròn (\(\hat{BDM}+\hat{BCM}=180^o\)) (đpcm).

 

b. Xét △ADB và △ACM :

\(\hat{ADB}=\hat{ACM}=90^o\)

\(\hat{A}\) chung

\(\Rightarrow\Delta ADB\sim\Delta ACM\left(g.g\right)\)

\(\Rightarrow\dfrac{AD}{AC}=\dfrac{AB}{AM}\Leftrightarrow AD.AM=AB.AC\) (đpcm).

 

c. Ta có : \(OD=OB=BD=R\) ⇒ △ODB đều.

\(\Rightarrow S_{\Delta ODB}=\dfrac{\sqrt{3}}{4}R^2\)

\(\hat{BOD}\) là góc ở tâm chắn cung BD \(\Rightarrow sđ\stackrel\frown{BC}=\hat{BOD}=60^o\) (do △ODB đều).

\(S_{ODB}=\dfrac{\text{π}R^2n}{360}=\dfrac{\text{π}R^2.60}{360}=\dfrac{\text{π}R^2}{6}\)

\(\Rightarrow S_{vp}=S_{ODB}-S_{\Delta ODB}=\dfrac{\text{π}R^2}{6}-\dfrac{\sqrt{3}}{4}R^2\)

\(=\dfrac{\text{π}}{6}R^2-\dfrac{\sqrt{3}}{4}R^2\)

\(=\dfrac{2\text{π}-3\sqrt{3}}{12}R^2\)

Bình luận (0)

Các câu hỏi tương tự
DT
Xem chi tiết
NM
Xem chi tiết
NN
Xem chi tiết
TC
Xem chi tiết
PB
Xem chi tiết
HN
Xem chi tiết
TT
Xem chi tiết
AB
Xem chi tiết
H24
Xem chi tiết