PB

Cho đường tròn (C) có tâm nằm trên đường thẳng ∆: x + 2y – 5 = 0 và tiếp xúc với hai đường thẳng d 1 :   3 x − y + 5 = 0   v à   d 2 :   x + 3 y − 13 = 0 . Khi đó bán kính lớn nhất của đường tròn (C) có thể nhận là:

A. 19 2 10

B. 3 10

C. 9 2 10

D. 6 10

CT
28 tháng 4 2018 lúc 11:18

Do tâm nằm trên đường thẳng ∆: x + 2y – 5 = 0 nên tâm I(5 – 2y; y). Mà đường tròn tiếp xúc với hai đường thẳng d 1 :   3 x − y + 5 = 0   v à   d 2 :   x + 3 y − 13 = 0  nên có bán kính  R = d I ; d 1 = d I ;   d 2

⇒ 3 ​ ( 5 − 2 y ) − y + 5 3 2 + ​ ( − 1 ) 2 =    5 − 2 y + ​ 3 y − 13 1 2 + 3 2

⇒ 20 − 7 y 10 =    − 8 + ​ y 10 ⇔ 20 − 7 y = − 8 + ​ y ⇔ 400 − 280 y + ​ 49 y 2 = 64 − ​​ 16 y + ​ y 2 ⇔ 48 y 2    − 264 y      + 336 = 0 ⇔ y = 2 y = 7 2

Tương ứng ta có hai bán kính của (C) là  R 1 = 6 10 ,   R 2 = 9 2 10

Đáp án là D.

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
KT
Xem chi tiết
PB
Xem chi tiết
NH
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PC
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết