Cho hình thang ABCD (CD > AB) với AB // CD và AB ┴ BD. Hai đường chéo AC và BD cắt nhau tại G. Trên đường thẳng vuông góc với AC tại C lấy điểm E sao cho CE = AG và đoạn thẳng GE khong cắt đường thẳng CD. Trên đoạn thẳng CD lấy điểm F sao cho DF = GB. Chứng minh GF ┴ EF
Cho Tam giác ABC vuông tại A ( AB < AC ) có đường cao AH
a) Chứng minh tam giác ABC đồng dạng tam giác CBA
b) Chứng minh AH2 = BH . HC
c) Trên đường thẳng vuông góc AC tại C , lấy điểm D sao cho CD = AB ( D và B nằm khác phía sao với đường thẳng AC ) . Đoạn thẳng HD cắt đoạn thẳng AC tại S . Kẻ AF vuông góc HS tại F .CM BH . CH = HF.HD
d) CM SFC = SHC
Cho đoạn thẳng ab, c thuộc đoạn thẳng ấy sao cho AC = 1/3AB. Vẽ về 2 phía AB các tia Ax, By vuông góc AB. Trên Ax lấy điểm D, trên By lấy điểm E sao cho CE =2CD. Chứng minh D, C, E thẳng hàng
cho hình vuông ABCD. Trên đoạn thẳng AB lấy điểm M sao cho BM=2/3 AB. Trên AD lấy điểm N sao cho AN=MB. a)Chứng minh NB=MC. b)Gọi O là giao điểm 2 đường chéo hình vuông ABCD, E là trung điểm AN, BE cắt AC tại F. Chứng minh EF//ON và AF=OF. c)ON cắt CD tại K. Chứng minh NE đi qua trung điểm của KB. d)Gọi P là chân đường vuông góc hạ từ D xuống đường thẳng BE. Chứng minh K, P, M thẳng hàng
Bài 1: Cho đoạn thẳng AB=2A trung điểm I. Trên nửa mặt phẳng bờ AB vẽ tia Ax, By vuông góc với AB, trên Ax lấy C, By lấy D sao cho AC.BD=a2. Vẽ IH vuông góc CD và HK vông góc AB. Chứng mình AC,BD,HK đồng quy
Bài 2: Cho O là trung điểm đoạn AB. Trên nửa mặt phẳng bờ AB vẽ tia Ax, By vuông góc với AB, trên Ax lấy C, qua O kẻ đường thẳng vuông góc OC cắt By tại D. Kẻ OM vuông góc CD, MH vuông góc với AB. Tìm vị trí điểm C trên Ax sao cho diện tích tứ giác ABCD min
Cho đoạn thẳng AB. kẻ tia Ax bất kỳ. Trên tia Ax lấy các điểm C,D,E sao cho AC=CD=DE. kẻ đoạn thẳng EB. Qua C,D kẻ các đường thẳng song song với EB cắt AB lấn lượt tại C' , D'. Chứng minh AC' = C'D' = D'B
Cho đoạn thẳng AB. O là trung điểm. Trên cùng một nửa mặt phẳng bờ là AB kẻ Ax, By cùng vuông góc với AB. Trên Ac lấy điểm C khác A. Từ O kẻ đường thẳng vuông góc với OC cắt By tại D. Từ O hạ O M ⊥ C D OM⊥CD a) Chứng minh O A 2 = A C . B D OA2=AC.BD b) Chứng minh Δ A M B ΔAMB vuông c) Gọi N là giao điểm của BC và AD. Chứng minh MN//AC
Cho hình thang ABCD (AB CD). Trên AD lấy điểm M sao cho AM=MD. N là trung điểm của AC. Kẻ đường thẳng đi qua MN cắt BC tại K(K thuộc EBC)
a. Chứng minh MN là đường trung bình của tam giác ADC
b, Chứng minh K là trung điểm của đoạn thẳng BC
c, Chứng minh MK là đường trung bình của hình thang ABCD d, Biết MN= 6cm. AB= 8cm. Tỉnh độ dài đoạn thẳng MK?
d, Biết MK=6cm, AB=8cm. Tính độ dài đoạn thẳng MK?
Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm. Trên cạnh AB lấy điểm M sao cho AM = 2cm. Từ M kẻ đường thẳng song song với BC cắt AC tại N. Lấy điểm I bất kỳ trên cạnh BC (I khác B, C). Vẽ điểm O trên đoạn AI sao AI = 3AO. Chứng minh ba điểm M, N, O thẳng hàng.