Chương 3: NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG

NQ

Cho đồ thị \(\left(C\right):y=f\left(x\right)=\sqrt{x}\). Gọi \(\left(H\right)\) là hình phẳng giới hạn bởi \(\left(C\right)\) và đường thẳng \(x=9\). Cho \(M\) là điểm thuộc \(\left(C\right)\) và điểm \(A\left(9;0\right)\). Gọi \(V_1\) là thể tích khối tròn xoay khi cho \(\left(H\right)\) quay quanh \(Ox\), \(V_2\) là thể tích khối tròn xoay khi cho tam giác \(AOM\) quay quanh \(Ox\). Biết \(V_1=2V_2\). Tính diện tích \(S\) phần hình phẳng giới hạn bởi \(\left(C\right)\)\(OM\) (hình vẽ không thể hiện chính xác điểm \(M\)).

A. \(S=3\) B. \(S=\frac{27\sqrt{3}}{16}\) C. \(S=\frac{3\sqrt{3}}{2}\) D. \(S=\frac{4}{3}\)

NL
22 tháng 3 2019 lúc 21:01

\(V_1=\pi\int\limits^9_0xdx=\frac{81\pi}{2}\)

Gọi \(M\left(a;\sqrt{a}\right)\) (\(0\le a\le9\)) và \(N\left(a;0\right)\) là hình chiếu của M trên Ox

Khi quay AOM quanh Ox sẽ tạo thành hai hình nón chung đáy với bán kính đáy \(r=MN=y_M=\sqrt{a}\); chiều cao lần lượt là \(ON=x_N=a\)\(OM=x_M-x_N=9-a\)

\(\Rightarrow V_2=\frac{1}{3}\pi\left(\sqrt{a}\right)^2\left(a+9-a\right)=3\pi a\)

\(\Rightarrow\frac{81\pi}{2}=6\pi a\Rightarrow a=\frac{27}{4}\) \(\Rightarrow M\left(\frac{27}{4};\frac{3\sqrt{3}}{2}\right)\)

\(\Rightarrow\) diện tích phần giới hạn:

\(S=\int\limits^{\frac{27}{4}}_0\sqrt{x}dx-\frac{1}{2}.\frac{27}{4}.\frac{3\sqrt{3}}{2}=\frac{27\sqrt{3}}{4}-\frac{81\sqrt{3}}{16}=\frac{27\sqrt{3}}{16}\)

Bình luận (2)
NQ
22 tháng 3 2019 lúc 10:22

Chương 3: NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG

Bình luận (0)

Các câu hỏi tương tự
TC
Xem chi tiết
TC
Xem chi tiết
TC
Xem chi tiết
H24
Xem chi tiết
TC
Xem chi tiết
NH
Xem chi tiết
NQ
Xem chi tiết
H24
Xem chi tiết
TC
Xem chi tiết