Chương 3: NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG

NQ

Cho hàm số \(f\left(x\right)\) có đạo hàm trên R thỏa: \(\left(x+2\right)f\left(x\right)+\left(x+1\right)f'\left(x\right)=e^x\)\(f\left(0\right)=\frac{1}{2}\). Tính \(f\left(2\right)\).

A. \(\frac{e}{3}\)

B. \(\frac{e}{6}\)

C. \(\frac{e^2}{3}\)

D. \(\frac{e^2}{6}\)

NL
21 tháng 3 2019 lúc 11:42

Nhìn 2 vế của hàm số thì có vẻ ta cần phân tích biểu thức vế trái về dạng \(\left[f\left(x\right).u\left(x\right)\right]'=f\left(x\right).u'\left(x\right)+u\left(x\right).f'\left(x\right)\), ta cần tìm thằng \(u\left(x\right)\) này

Biến đổi 1 chút xíu: \(\frac{\left[f\left(x\right).u\left(x\right)\right]'}{u\left(x\right)}=\frac{u'\left(x\right)}{u\left(x\right)}f\left(x\right)+f'\left(x\right)\) (1) hay vào bài toán:

\(\left(\frac{x+2}{x+1}\right)f\left(x\right)+f'\left(x\right)=\frac{e^x}{x+1}\) (2)

Nhìn (1) và (2) thì rõ ràng ta thấy \(\frac{u'\left(x\right)}{u\left(x\right)}=\frac{x+2}{x+1}=1+\frac{1}{x+1}\)

Lấy nguyên hàm 2 vế:

\(ln\left(u\left(x\right)\right)=\int\left(1+\frac{1}{x+1}\right)dx=x+ln\left(x+1\right)\)

\(\Rightarrow u\left(x\right)=e^{x+ln\left(x+1\right)}=e^x.e^{ln\left(x+1\right)}=e^x.\left(x+1\right)\)

Vậy ta đã tìm xong hàm \(u\left(x\right)\)

Vế trái bây giờ cần biến đổi về dạng:

\(\left[f\left(x\right).e^x\left(x+1\right)\right]'=e^x\left(x+2\right).f\left(x\right)+f'\left(x\right).e^x\left(x+1\right).f'\left(x\right)\)

Để tạo thành điều này, ta cần nhân \(e^x\) vào 2 vế của biểu thức ban đầu:

\(e^x\left(x+2\right)f\left(x\right)+e^x\left(x+1\right)f'\left(x\right)=e^{2x}\)

\(\Leftrightarrow\left[f\left(x\right).e^x.\left(x+1\right)\right]'=e^{2x}\)

Lấy nguyên hàm 2 vế:

\(f\left(x\right).e^x\left(x+1\right)=\int e^{2x}dx=\frac{1}{2}e^{2x}+C\)

Do \(f\left(0\right)=\frac{1}{2}\Rightarrow f\left(0\right).e^0=\frac{1}{2}e^0+C\Rightarrow C=0\)

Vậy \(f\left(x\right).e^x\left(x+1\right)=\frac{1}{2}e^{2x}\Rightarrow f\left(x\right)=\frac{1}{2}\frac{e^{2x}}{e^x\left(x+1\right)}=\frac{e^x}{2\left(x+1\right)}\)

\(\Rightarrow f\left(2\right)=\frac{e^2}{2\left(2+1\right)}=\frac{e^2}{6}\)

Bình luận (0)

Các câu hỏi tương tự
TC
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
TC
Xem chi tiết
KV
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết