Bài 3: Hàm số liên tục

LH

Cho đồ thị C có phương trình y= 2x+2/x-1.viết phương trình tiếp tuyến của C a) tại tiếp điểm M(2;4) b)tại giao điểm của C với d có phương trình y= 2x-1

NL
19 tháng 3 2021 lúc 16:19

\(y=\dfrac{2x+2}{x-1}\Rightarrow y'=\dfrac{-4}{\left(x-1\right)^2}\)

a. \(y'\left(2\right)=-4\)

Phương trình tiếp tuyến: \(y=-4\left(x-2\right)+4\Leftrightarrow y=-4x+12\)

b. Pt hoành độ giao điểm:

\(\dfrac{2x+2}{x-1}=2x-1\Leftrightarrow2x^2-5x-1=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{5-\sqrt{33}}{4}\\x=\dfrac{5+\sqrt{33}}{4}\end{matrix}\right.\)

\(y'\left(\dfrac{5-\sqrt{33}}{4}\right)=-\dfrac{17+\sqrt{33}}{8}\) ; \(y'\left(\dfrac{5+\sqrt{33}}{4}\right)=\dfrac{-17+\sqrt{33}}{8}\)

\(y\left(\dfrac{5-\sqrt{33}}{4}\right)=\dfrac{3-\sqrt{33}}{2}\) ; \(y\left(\dfrac{5+\sqrt{33}}{4}\right)=\dfrac{3+\sqrt{33}}{2}\)

Có 2 tiếp tuyến thỏa mãn: 

\(\left[{}\begin{matrix}y=\dfrac{-17-\sqrt{33}}{8}\left(x-\dfrac{5-\sqrt{33}}{4}\right)+\dfrac{3-\sqrt{33}}{2}\\y=\dfrac{-17+\sqrt{33}}{8}\left(x-\dfrac{5+\sqrt{33}}{4}\right)+\dfrac{3+\sqrt{33}}{2}\end{matrix}\right.\)

Đề bài cho số liệu thật kì quặc

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
XG
Xem chi tiết
NA
Xem chi tiết
SK
Xem chi tiết
MA
Xem chi tiết
MA
Xem chi tiết
MA
Xem chi tiết
MA
Xem chi tiết
MA
Xem chi tiết