H24

Cho điểm M nằm ngoài đường tròn (O;R). Vẽ tiếp tuyến MA và cát tuyến MCB (MB > MC) nằm khác phía đối với đường thẳng MO. Đường tròn tâm I đường kính BC cắt AB, AC lần lượt tại E và D. BD cắt CE tại H, K là trung điểm AH.
 a) Chứng minh tứ giác MAOI nội tiếp, xác định tâm S của đường tròn ngoại tiếp tứ giác này; và K là tâm đường tròn ngoại tiếp của tam giác ADE.
 b) Chứng minh: OA song song KI.
 c) Đường tròn (I;IK) cắt (S) tại F sao cho F nằm trên nửa mặt phẳng có bờ là MB không chứa điểm A. Chứng minh A, H, F thẳng hàng.
 d) AH cắt BC tại G. Tia GD cắt MA tại N. Chứng minh tứ giác ANFB là tứ giác nội tiếp.


Các câu hỏi tương tự
H24
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
YF
Xem chi tiết
LD
Xem chi tiết