Violympic toán 9

TT

Cho \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\). Chứng minh rằng: \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)

MS
9 tháng 2 2018 lúc 20:07

\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\Leftrightarrow\dfrac{ayz}{xyz}+\dfrac{bxz}{xyz}+\dfrac{cxy}{xyz}=0\Leftrightarrow ayz+bxz+cxy=0\) (1)

\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\Leftrightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{yz}{bc}+\dfrac{xz}{ac}\right)=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{cxy+ayz+bxz}{abc}\right)=1\)

Kết hợp với (1) ta có đpcm

Bình luận (0)

Các câu hỏi tương tự
VD
Xem chi tiết
VH
Xem chi tiết
TB
Xem chi tiết
TT
Xem chi tiết
MS
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
LT
Xem chi tiết