Violympic toán 9

VD

Cho a,b,c,x,y,z là những số thực khác không , thỏa mãn điều kiện :

\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)

Chứng minh rằng : \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)

MS
5 tháng 12 2018 lúc 20:59

\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\Leftrightarrow ayz+bxz+cxy=0\left(1\right)\)

\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{yz}{bc}+\dfrac{xz}{ac}\right)=1=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xyc+ayz+xbz}{abc}\right)=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)(đpcm)

Bình luận (0)
H24
5 tháng 12 2018 lúc 20:59

\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)

\(\Leftrightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\Leftrightarrow ayz+bxz+cxy=0\)

\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2-2\left(\dfrac{xy}{ab}+\dfrac{yz}{bc}+\dfrac{zx}{ac}\right)\)

\(=\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2-2\left(\dfrac{cxy+ayz+bzx}{abc}\right)\)\(=1-0=1\left(dpcm\right)\)

Bình luận (0)

Các câu hỏi tương tự
VH
Xem chi tiết
TB
Xem chi tiết
TT
Xem chi tiết
MS
Xem chi tiết
LT
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết