Cho a,b,c,x,y,z >0 thỏa \(\dfrac{x^2-yz}{a}=\dfrac{y^2-xz}{b}=\dfrac{z^2-xy}{c}\)
Chứng minh \(\dfrac{a^2-bc}{x}=\dfrac{b^2-ac}{y}=\dfrac{c^2-ab}{z}\)
Cho các số thực a,b,c,x,y,z khác 0 thỏa mãn
\(\dfrac{x^2-yz}{a}=\dfrac{y^2-zx}{b}=\dfrac{z^2-xy}{c}\)
Chứng minh rằng \(\dfrac{a^2-bc}{x}=\dfrac{b^2-ac}{y}=\dfrac{c^2-ab}{z}\)
Cho x,y,z đôi một khác nhau và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
Tính A=\(\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}\)
Cho 3 số dương x,y,z. CM \(\dfrac{1}{x^2+yz}+\dfrac{1}{y^2+xz}+\dfrac{1}{z^2+xy}\le\dfrac{1}{2}\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)\)
Với các số thực âm x, y, z thỏa mãn \(x^2+y^2+z^2=2\)
a) chứng minh \(x+y+z\le2+xy\)
b) tìm min và max của \(P=\dfrac{x}{2+yz}+\dfrac{y}{2+xz}+\dfrac{z}{2+xy}\)
Cho x, y, z >0 thỏa mãn x + y + z= xyz
CMR: \(\dfrac{x}{x^2+yz}+\dfrac{y}{y^2+xz}+\dfrac{z}{z^2+xy}\le\dfrac{\sqrt{3}}{2}\)
Cho x,y,z là các số thực thỏa mãn \(x^2+y^2+z^2=3\) Chứng minh :
\(\dfrac{x}{3-yz}+\dfrac{y}{3-xz}+\dfrac{z}{3-xy}\le\dfrac{3}{2}\)
cho x,y,z là các số nguyên dương với \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\)
Tìm max : \(\dfrac{x}{x^2+yz}+\dfrac{y}{y^2+xz}+\dfrac{z}{z^2+xy}\)
Cho \(A=\dfrac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+2}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{2\sqrt{z}}{\sqrt{xz}+2\sqrt{z}+2}\). Biết xyz=4; tính \(\sqrt{A}\)