Violympic toán 9

BB

Cho \(A=\dfrac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+2}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{2\sqrt{z}}{\sqrt{xz}+2\sqrt{z}+2}\). Biết xyz=4; tính \(\sqrt{A}\)

LL
31 tháng 10 2021 lúc 12:05

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\y\ge0\\z\ge0\end{matrix}\right.\)

\(A=\dfrac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+2}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{2\sqrt{z}}{\sqrt{xz}+2\sqrt{z}+2}\)

\(=\dfrac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+\sqrt{xyz}}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{\sqrt{xyz}.\sqrt{z}}{\sqrt{xz}+\sqrt{xyz}.\sqrt{z}+\sqrt{xyz}}\)

\(=\dfrac{1}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{\sqrt{yz}}{\sqrt{yz}+\sqrt{y}+1}\)

\(=\dfrac{\sqrt{yz}+\sqrt{y}+1}{\sqrt{yz}+\sqrt{y}+1}=1\)

\(\Rightarrow\sqrt{A}=\sqrt{1}=1\)

Bình luận (0)

Các câu hỏi tương tự
NC
Xem chi tiết
BB
Xem chi tiết
H24
Xem chi tiết
VH
Xem chi tiết
DL
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết
MD
Xem chi tiết
NM
Xem chi tiết