VN

Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\)và a + b + c \(\ne\) 0; a = 2005. Tính b, c.

AK
31 tháng 5 2018 lúc 16:12

Ta có : 

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) 

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có : 

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow}a=b=c}\)

Mà \(a=2005\)

\(\Rightarrow b=c=2005\)

Vậy \(b=c=2005\)

~ Ủng hộ nhé 

Bình luận (0)
NH
31 tháng 5 2018 lúc 16:15

 Có \(\frac{a}{b}\) = \(\frac{b}{c}\) = \(\frac{c}{a}\) và a + b + c \(\ne\) 0

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có

\(\frac{a}{b}\) = \(\frac{b}{c}\) = \(\frac{c}{a}\) = \(\frac{a+b+c}{b+c+a}\) = 1

+,  \(\frac{a}{b}\) = 1  \(\Rightarrow\) a = b (1)

+, \(\frac{b}{c}\) = 1 \(\Rightarrow\) b = c (2)

+, \(\frac{c}{a}\) = 1 \(\Rightarrow\) c = a (3 )

Từ (1), (2) và (3) \(\Rightarrow\) a = b = c

mà a = 2005 ( bài cho )

\(\Rightarrow\) b = 2005 và c = 2005

Vậy b = 2005; c = 2005

Bình luận (0)
KB
31 tháng 5 2018 lúc 16:30

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\)

\(\Rightarrow a=b=c\)

\(\Rightarrow b=c=2005\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
ND
Xem chi tiết
VT
Xem chi tiết
LT
Xem chi tiết
MN
Xem chi tiết
H24
Xem chi tiết