LT

Cho \(\dfrac{a+b}{a-d}=\dfrac{c+a}{c-a}\) với a, b, c ≠ 0. Chứng minh rằng từ ba số a, b, c (có một số sử dụng 2 lần) có thể lập thành một tỉ lệ thức.

NM
7 tháng 11 2021 lúc 11:02

Sửa: \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)

Áp dụng tc dtsbn:

\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\Rightarrow\dfrac{a+b}{a+c}=\dfrac{a-b}{c-a}=\dfrac{a+b-a+b}{a+c-c+a}=\dfrac{2b}{2a}=\dfrac{b}{a}\)

Lại có \(\dfrac{a+b}{a+c}=\dfrac{a-b}{c-a}=\dfrac{a+b+a-b}{a+c+c-a}=\dfrac{2a}{2c}=\dfrac{a}{c}\)

Vậy ta lập đc tỉ lệ thức \(\dfrac{a}{c}=\dfrac{b}{a}\)

Bình luận (0)

Các câu hỏi tương tự
LT
Xem chi tiết
NQ
Xem chi tiết
TN
Xem chi tiết
PN
Xem chi tiết
PQ
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết