Violympic toán 9

WJ

Cho \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=0\) Chứng minh rằng:\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\)

HN
7 tháng 9 2017 lúc 18:08

Ta có: \(pt\Leftrightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}+a+b+c=a+b+c\)

\(\Leftrightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}+\dfrac{a\left(b+c\right)}{b+c}+\dfrac{b\left(c+a\right)}{c+a}+\dfrac{c\left(a+b\right)}{a+b}=a+b+c\)

\(\Leftrightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}+\dfrac{ab}{b+c}+\dfrac{ac}{b+c}+\dfrac{bc}{c+a}+\dfrac{ba}{c+a}+\dfrac{ca}{a+b}+\dfrac{cb}{a+b}=a+b+c\)

\(\Leftrightarrow\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=a+b+c\)

\(\Leftrightarrow\) đpcm

Từ cái sau suy ra cái trước thì còn dễ hơn, đề này tui mà chưa làm kiểu kia sao bk làm :)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
HA
Xem chi tiết
H24
Xem chi tiết
PP
Xem chi tiết
TT
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết