TT

Cho  : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)

Tính \(A=\dfrac{yz}{x^{2}-2yz}+\dfrac{xz}{y^{2}+2xz}+\dfrac{xy}{z^{2}+2xy}\)

Mong m.n làm giúp e với ạ  

Em cảm ơn 

TT
2 tháng 5 2021 lúc 17:50

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) (\(x,y,z\ne0;x\ne y\ne z\)

\(\Leftrightarrow xy+yz+xz=0\)

\(\Leftrightarrow2yz=yz-xy-xz\)

\(\Leftrightarrow x^2+2yz=\left(x-y\right)\left(x-z\right)\)

CMTT : \(\left\{{}\begin{matrix}y^2+2xz=\left(y-z\right)\left(y-x\right)\\z^2+2xy=\left(z-x\right)\left(z-y\right)\end{matrix}\right.\)

\(A=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(A=\dfrac{y^2z-yz^2-x^2z+xz^2+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(A=\dfrac{z^2\left(x-y\right)-z\left(x-y\right)\left(x+y\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(A=\dfrac{z^2-xz-yz+xy}{\left(x-z\right)\left(y-z\right)}=\dfrac{x\left(y-z\right)-z\left(y-z\right)}{\left(x-z\right)\left(y-1\right)}=1\)

Thề, gõ máy mệt gấp đôi viết tay =))

Bình luận (1)

Các câu hỏi tương tự
CC
Xem chi tiết
H24
Xem chi tiết
LH
Xem chi tiết
HK
Xem chi tiết
QT
Xem chi tiết
MA
Xem chi tiết
H24
Xem chi tiết
LH
Xem chi tiết
H24
Xem chi tiết