cho tam giác ABC nhọn (AB<AC) nội tiếp (O;R). kẻ 2 đường cao BD và CE cắt nhau tại H. Tại A vẽ tiếp tuyến Ax của (O). a) CM: AH vuông BC b) CM: BEDC nội tiếp và OA vuông ED c) gọi I là giao điểm AH và BC. CM IH là phân giác gốc EID. từ đó suy ra H là tâm đường tròn nội tiếp tam giác EID d) CM: AD.AC + BI.BC = AC2 + BC2 - AB2 Mình làm xong a b c rồi, các bạn giúp mình câu d với
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Vẽ các đg cao AD, BE, CF của tam giác ABC cắt nhau tại H. Kẻ đg kính AM.
a) Cm tứ giác BHCM là hình bình hành
b) Gọi I là giao điểm HM và BC. Cm OI vuông góc BC và AH = 2OI
c) Gọi G là trọng tâm tam giác ABC. Cm O, G, H thẳng hàng.
d) Cm SAGH= 2SAGO
Cho đường tròn tâm O. Tam giác ABC nhọn nội tiếp đường tròn tâm O. Hai đường cao BD và CE cắt nhau tại H. Vẽ đường kính AF. Tia AH cắt BC tại I và đường tròn tâm O tại K. CMR:
a) Tứ giác BHCF là hình bình hành
b) AE.AB = AD.AC
c) CM: K đối xứng với H qua BC
d) CM:\(ED\perp AF\)
cho tam giác nhọn ABC nội tiếp đường tròn (O;R) (AB>AC ) . gọi H là giao điểm của 2 đường cao BD và CE của tam giác ABC , F là giao điểm của AH và BC .a) CM tứ giác BEHF nội tiếp . b) CM FA*FH =FB *FC . vẽ đường kính AI của đường tròn (O) . gọi K là điểm đối xứng của H qua BC . CM tứ giác BIKC là hình thang cân
Cho ∆ABC ( AB < AC ). Vẽ đường tròn tâm O, đường kính BC cắt AB , AC lần lượt tại E,D. Gọi H là giao điểm của BD và CE .
a) CM : AE. AB = AD.AC
b) Tia AH cắt BC tại F. Cm : AF vuông góc với BC và tứ giác BEHF nội tiếp.
c) Cm : tứ giác OFED nội tiếp.
Cho tam giác ABC vuông tại A (AB<AC). Vẽ đường tròn (O;R) đường kính AC cắt BC tại D.
a) Vẽ H là trung điểm AD. Tia OH cắt AB tại E. cm DE là tiếp tuyến (O) (câu này mình làm được rồi)
b) Vẽ tiếp tuyến tại C của (O) cắt DE tại N. gọi K,I lần lượt là giao diểm của EC với ON và EC với OD. cm: IE.KC=IK.EC
mong các bạn chỉ mình câu b với, cảm ơn!
giúp mình câu d cvoi.
cho tam giác ABC nhọn (AB<AC) nội tiếp (O;R). kẻ 2 đường cao BD và CE cắt nhau tại H. Tại A vẽ tiếp tuyến Ax của (O).
a) CM: AH vuông BC
b) CM: BEDC nội tiếp và OA vuông ED
c) gọi I là giao điểm AH và BC. CM IH là phân giác gốc EID. từ đó suy ra H là tâm đường tròn nội tiếp tam giác EID
d) CM: AD.AC + BI.BC = AC2 + BC2 - AB2
Cho tam giác ABC nhọn, nội tiếp (O). Đường cao BD,CƯ cắt nhau tại H. Vẽ đường kính AM của (O). CM a) BHCM là hình bình hành b) Gọi I là giao điểm của HM và BC.CM OI vuông góc BC
Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.
a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn này
b) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hành
c) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)
d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABC
Bài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt nhau tại H. Gọi O là trung điểm BC
a) Cm: tam giác AEF đồng dạng tam giác ABC và EF = AH/ (căn 2)
b) Cm: tam giác OEF vuông cân và diện tích tam giác AEF= diện tích tứ giác BCEF
c) Cm: trong các tam giác vuông có chiều cao ứng với cạnh huyền không đổi, tam giác vuông cân có chu vi nhỏ nhất
Bài 3: Cho (O;R) và (O' ; R') cắt nhau tại A và (R>R'). Tiếp tuyến chung EF của (O) và (O') cắt tia đối của tia AB tại C (E thuộc (O), F thuộc (O')). Gọi (I) và (J) lần lượt là tâm của 2 đường tròn ngoại tiếp tam giác OEC và tam giác O'FC
a) Cm: (I) cắt (J)
b) Gọi D là giao điểm cùa (I) và (J) (D # C). Cm: A,B,D thẳng hàng
c) Gọi M là điểm đối xứng của E qua OC, N là điểm đối xứng của F qua O'C. Cm" E,F,M,N cùng thuộc 1 đường tròn, xác định tâm đường tròn này
Bài 4: Cho tam giác ABC, vẽ (I;r) tiếp xúc AB,BC,CA lần lượt tại M,N,S.
a) Cm: AB+AC-BC=2M
b) Cho AB=7cm, BC=6cm, AC=4cm. Tính MA,NB,SC
c) Giả sử tam giác ABC vuông tại A, R và r là bán kính của đường tròn ngoại tiếp và nội tiếp của tam giác
Cm: AB+AC=2(R+r)
Các bạn không cần làm hết đâu ạ, câu nào các bạn biết thì các bạn làm dùm mình rồi gửi câu trả lời cho mình nha. Mình cần gấp lắm ạ!!!! Mong các bạn giúp mình