gọi H là tđ AG. xét tg ADG vuông tại D có trung tuyến DH => DH=HA vậy gócHAD= gócHDA cmtt có gócHAD=gócC từ đó suy ra góc HDA=góc C =>DH//BC => AD/DC=AH/HM=1/2 mà AB/BC=AD/DC=1/2
xét tgABC vuông tại A có BC=2AB =>ACB=30 độ
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
gọi H là tđ AG. xét tg ADG vuông tại D có trung tuyến DH => DH=HA vậy gócHAD= gócHDA cmtt có gócHAD=gócC từ đó suy ra góc HDA=góc C =>DH//BC => AD/DC=AH/HM=1/2 mà AB/BC=AD/DC=1/2
xét tgABC vuông tại A có BC=2AB =>ACB=30 độ
Cho tam giác ABC vuông tại A có AB > AC. Lấy M là một điểm tùy ý trên cạnh BC. Qua M kẻ đường thẳng vuông góc với BC và cắt đoạn thẳng AB tại I, cắt đưởng thẳng AC tại điểm D.
a, CM tam giác ABC đồng dạng cới tam giác MDC
b, CM rằng BI.BA = BM.BC
c, CM góc BAM = gcs ICB. Từ đó cm AB là p/g của góc MAK với K là giao điểm của CI và BD
d, Cho AB = 8cm, AC = 6cm. Khi AM là đường p/g trong tam giác ABC, hãy tính diện tích tứ giác AMBD.
Cho tam giác ABC, trực tâm H . Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở D. Gọi O là trung điểm AD, M là trung điểm BC. Chứng minh
a, O là giao điểm các đường trung trực của tam giác ABC
b, OM=1/2AH
Cho tam giác ABC vuông tại A, biết AB=21 cm, AC=28 cm, phân giác AD ( D thuộc BC). Tính độ dài DB, DC. Gọi E là hình chiếu của D trên AC. Hãy tính độ dài DE, EC. Gọi I là giao điểm các đường phân giác và G là trọng tâm của tam giác ABC. Cm IG song song AC ( vẽ hình hộ mình với ạ )
cho tam giác ABC nhọn, đường cao BE và CF cắt nhau tại H. Gọi M là trung điểm của BC và I là điểm đối xứng của H qua M. Kẻ CQ vuông góc với BI tại Q. Chứng minh rằng:
a) EFQ là tam giác vuông
b) góc AFE= Góc ACB
C) AI Song song với EQ
Cho tam giác ABC. Đcao AH. Kẻ HM vuông góc với AB tại M, HN vuông góc với AC tại N.
a, CM AH2=AB.AM
b, CM AC.AN=AB.AM
c, So sánh góc AMN và góc ACB
d, Gọi O là giao điểm 3 đường trung trực của tam giác ABC. CM OA vuông góc với MN
GIÚP MÌNH PHẦN D VỚI. Dùng cách lớp 8 nha
Cho tam giác ABC vuông tại A (AB < AC) có AH là đường cao. Gọi M,N lần lượt là trung điểm của BC,AB.
a) CM: tam giác ABH đồng dạng tam giác CBA và \(AB^2=BH.BC\)
b) Tia phân giác góc ABC cắt AC tại D. Vẽ đường thẳng AK vuông góc BD tại K.
CM: tam giác BHD đồng dạng tam giác BKC.
c) CM: MN vuông góc AB và \(BH.BM=BN.BA\)
d) Từ B vẽ đường thẳng vuông góc với BC cắt MN tại I, CI cắt AH tại O.
CM: ON song song BC (câu chủ yếu)
Cho tam giác ABC cân tại A, đường cao AD. Kẻ DH vuông góc với AC. Gọi I là trung điểm của DH, Mlaf trung điểm của HC. Chứng minh AI vuông góc với DM
Cho tam giác ABC, góc A=90 độ.Đường cao AH gọi D là điểm đối xứng của B qua H.
a/ Tam giác ABC ~ Tam giác HBA
b/Từ C kẻ đường vuông góc AD, cắt AD tại E
C/m: AH.CD=CE.AD
c/ Tam giác ABC ~ Tam giác EDC và tính S EDC
d/Biết AH cắt CE tại F; FD cắt AC tại K.C/m KD là p/g góc HKE
Cho △ABC vuông tại a (AB<AC) có đường cao AH (H ϵ BC).Kẻ HD vuông góc với AB tại D và HE vuông góc với AC tại E.
a)Chứng minh:tứ giác ADHE là hình chữ nhật
b)Gọi F là điểm đối xứng của H qua D .Chứng minh tứ giác AEDF là hình bình hành.
c)Gọi K là giao điểm của FA và HE.Chứng minh tứ giác ADEK là hình bình hành từ đó suy ra E là trung điểm HK.
d)Đường thẳng qua H và song song với DE cắt AC tại M.Chứng minh tứ giác AHMK là hình thoi