Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho \(\Delta ABC\) nhọn (AB < AC). Trên nửa mặt phẳng bờ BC không chứa điểm A, vẽ tia cX song song với AB. Trên tia Cx, lấy điểm D sao cho CD = AB.
a) Chứng minh \(\Delta ABC=\Delta DCB\)
b) Chứng minh AC // BD\
c) Kẻ \(AH\perp BC\) tại H, \(DC\perp BK\) tại K. Chứng minh AH = DK.
d) Gọi I là trung điểm của BC. Chứng minh I là trung điểm của AD.
Cho tam giác ABC , vuông cân tại A . D là một điểm bất kì trên BC . Vẽ hai tia Bx và Cy cung vuông góc với BC và nằm cùng một nửa mặt phẳng chứa điểm A bờ là đường thẳng BC . Qua A vẽ một đường thẳng vuông góc với AD cắt Bx và Cy theo thứ tự M và N .
Chứng minh a, AM = ADb,
A là trung điểm MN
chứng minh mn lớn hơn hoặc bằng bc
các bạn chủ yếu làm giúp câu c ạ
Cho tam giác ABC, trên nửa mặt phảng bờ AC không chứa B, vẽ AE vuông góc AC và AE=AB. Trên nửa mặt phẳng bờ AB không chứa C, vẽ AD vuông AB và AD=AB. Vẽ AH vuông BC. Qua D kẻ di vuông AH, qua e kẻ đường thẳng // DI cắt AH tại K
a) Chứng minh DI=AH
b) Chứng minh EK vuông AH và EK=DI
c) Cho DE và IK cắt nhau tại O. Chứng minh O là trung điểm IK và DE
d) Chứng minh BE vuông CD và BE=CD
Cho tam giác ABC có AB = 5cm , AC = 5cm , BC = 5 căn bậc 2 cm
a) Và từ tam giác trên chứng minh tam giác ABC vuông tại A
b) trên nửa mặt phẳng bờ BC không chứa A dựng D sao cho CD vuông góc với BC , CD = 5 căn bậc 2 cm tính độ dài BD
Bài 1. Cho tam giác ABC vuông ở A, M là trung điểm BC. Kẻ tia Cx vuông góc CA (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC ). Trên tia Cx lấy điểm D sao cho AB=CD . Chứng minh ba điểm B,M,D thẳng hàng.
Cho đoạn thẳng AB và điểm M nằm giữa A và B. Trên cùng một nửa mặt phẳng có bờ là đường thẳng AB, vẽ các tam giác đều MAC và MBD. Các tia AC và BD cắt nhau tại O
a) ΔAOB đều
b) MC=OD; MD=OC
c) AD=BC
d) Gọi I và K lần lượt là trung điểm của AD và BC. CMR: MI=MK và ΔMIK đều
e) Gọi E là giao điểm của AD và BC. Tính góc CEA=?
Bài 1: Cho ΔABC cân tại A, có M là trung điểm BC.
a) CM: ΔABM=ΔACM
b) CM: AM ⊥ BC
c) CM: AM là tia phân giác của góc BAC
d) Trên tia đối AM lấy điểm D sao cho AM=MD. Chứng minh: ΔACD cân
e) Qua A kẻ Ax song song BC ( Ax thuộc nữa mặt phẳng bờ là AB có chứa điểm C ). Trên tia Ax lấy điểm E sao cho AE=BC. Chứng minh: ΔABC=ΔCEA
f) CM: 3 điểm D,C,E thẳng hàng
Bài Tập:
cho △ ABC vuông tại A. Trên nửa mặt phẳng bờ AC không chứa điểm B vẽ tia Ax // BC. Lấy D ∈ Ax sao cho AD= BD.
a, CM: ΔABC=ΔCDA
b,CM:AB//CD
c, kẻ AE ⊥ BC tại E. Kẻ CF ⊥ AD tại F. CM: BE= DF
d, o là trungđiểm của AC. CM: O là trung điểm của EF
Cho tam giác ABC, đường cao AH. Trên nửa mặt phẳng chứa điểm A bờ là đường thẳng BC lấy các điểm D và E sao cho BDBA; BD = BA; CECA; CE = CA.
Chứng minh rằng các đường thẳng AH, BE, CD đồng quy.