LD

Cho dãy số \(\left(u_n\right)\) như sau

\(\left\{{}\begin{matrix}u_1=-1;u_2=-2\\nu_{n+2}-\left(3n+1\right)u_{n+1}+2\left(n+1\right)u_n=3,\forall n\in N\text{*}\end{matrix}\right.\)

Tìm CTTQ 

TC
5 tháng 1 2024 lúc 23:21

Ta có:

\(nu_{n+2}-\left(3n+1\right)u_{n+1}+2\left(n+1\right)u_n=3\)

\(\Leftrightarrow n\left(u_{n+2}-2u_{n+1}\right)-\left(n+1\right)\left(u_{n+1}-2u_n\right)=3\)

Đặt \(u_{n+1}-2u_n=v_n\)

\(\Rightarrow\left\{{}\begin{matrix}v_1=u_2-2u_1=-2-2.\left(-1\right)=0\\nv_{n+1}-\left(n+1\right)v_n=3\left(1\right)\end{matrix}\right.\)

Từ \(\left(1\right)\Rightarrow\dfrac{1}{n+1}v_{n+1}-\dfrac{1}{n}v_n=\dfrac{3}{n\left(n+1\right)}\)

Ta có:

\(\dfrac{1}{2}v_2-v_1=\dfrac{3}{1.2}\)

\(\dfrac{1}{3}v_3-\dfrac{1}{2}v_2=\dfrac{3}{2.3}\)

\(\dfrac{1}{4}v_4-\dfrac{1}{3}v_3=\dfrac{3}{3.4}\)

\(...\)

\(\dfrac{1}{n}v_n-\dfrac{1}{n-1}v_{n-1}=\dfrac{3}{\left(n-1\right)n}\)

\(\dfrac{1}{n+1}v_{n+1}-\dfrac{1}{n}v_n=\dfrac{3}{n\left(n+1\right)}\)

Cộng theo vế, ta có:

\(\dfrac{1}{n+1}v_{n+1}-v_1=3\left(1-\dfrac{1}{n+1}\right)\)

\(\Rightarrow v_{n+1}=3n\Leftrightarrow v_n=3\left(n-1\right)\)

\(\Rightarrow u_{n+1}-2u_n=3\left(n-1\right)\)

\(\Leftrightarrow u_{n+1}+3\left(n+1\right)=2\left(u_n+3n\right)\)

Đặt \(a_n=u_n+3n\Rightarrow\left\{{}\begin{matrix}a_1=u_1+3=2\\a_{n+1}=2a_n\end{matrix}\right.\)

\(\Rightarrow a_n=2^n\)\(\Rightarrow u_n=2^n-3n\)\(,\forall n\in N\text{*}\)

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
PD
Xem chi tiết
MN
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
TW
Xem chi tiết
H24
Xem chi tiết
NC
Xem chi tiết