Chứng minh rằng:
\(\frac{1.3.5.7.....\left(2n-1\right)}{\left(n+1\right).\left(n+2\right).\left(n+3\right)....2n}=\frac{1}{2^n}\)
(với n ϵ N*)
Giải pt :
\(\left\{{}\begin{matrix}x\sqrt{x^2+y}+y=\sqrt{x^4+x^2}+x\\x+\sqrt{y}+\sqrt{x-1}+\sqrt{y\left(x-1\right)}=\frac{9}{2}\end{matrix}\right.\)
giải pt
\(2\left(x+1\right)\sqrt{x}+\sqrt{3\left(2x^3+5x^2+4x+1\right)}=5x^3-3x^2+8\)
cho a,b,c là các số hữu tỉ thỏa mãn a(b+c)=1-bc. CMR
\(A=\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\) là số hữu tỉ
\(\sqrt{\left(x-3\right)^2\left(5-3x\right)}+2x=\sqrt{3x-5}+4\)
cho a,b,c là 3 số thực sao cho (a-b)(b-c)(c-a) khác 0. Tìm GTNN của biếu thức
\(P=\left(a^2+b^2+c^2+ab+bc+ac\right)\left(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(a-c\right)^2}\right)\)
giải hệ phương trình
\(\left\{{}\begin{matrix}\left(2-x\right)\left(2+y\right)=8\\x\sqrt{4-y^2}+y\sqrt{4-x^2}=4\end{matrix}\right.\)
Liệt kê các phần tử x thỏa mãn:
a) \(1+\frac{2}{x-2}=\frac{10}{x+3}-\frac{50}{\left(2-x\right)\left(x+3\right)}\)
b) \(\frac{x+3}{\left(x+1\right)^2}=\frac{4x-2}{\left(2x-1\right)^2}\)
c) \(1+\frac{4}{\left(2-x\right)^2}=\frac{5}{x^2}\)
\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{2\sqrt{x+2}-3}{x-1}\\x^2+1\end{matrix}\right.\)
x≥2, x<2
Tính P=f(2)+f(-2)