§3. Các phép toán tập hợp

DT

cho a,b,c là các số hữu tỉ thỏa mãn a(b+c)=1-bc. CMR
\(A=\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\) là số hữu tỉ

HN
10 tháng 10 2017 lúc 15:22

\(a\left(b+c\right)=1-bc\)

\(\Leftrightarrow1=ab+bc+ca\)

Ta có:

\(A=\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\)

\(=\sqrt{\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)}\)

\(=\sqrt{\left(a+b\right)\left(c+a\right)\left(b+c\right)\left(a+b\right)\left(c+a\right)\left(b+c\right)}\)

\(=\sqrt{\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2}=\left|\left(a+b\right)\left(b+c\right)\left(c+a\right)\right|\)

Vậy A là số hữu tỉ

Bình luận (0)

Các câu hỏi tương tự
HV
Xem chi tiết
CY
Xem chi tiết
DH
Xem chi tiết
LM
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
HA
Xem chi tiết
NA
Xem chi tiết
HT
Xem chi tiết