Cho dãy số: 13; 25; 43; ....; \(3\left(n^2+n\right)+7\)...... Với n nguyên dương, chứng minh rằng không có số hạng nào của dãy là lập phương của 1 số tự nhiên
Cho dãy số 1,13,25,..,3n(n-1)+7. Chứng minh rằng
a) Trong năm số hạng liên tiêp của dãy, bao giờ cũng tồn tại bội số của 25
b) Không có số hạng nào của dãy là lập phương của 1 số nguyên
Cho dãy số 7,13,25,.......,3n.(n-1)+7\(\left(n\in N\right)\).C/mr:
a, Trong 5 số hạng liên tiếp của dãy, bao giờ cũng tồn tại một bội số của 25
b,Không có số hạng nào của dãy là lập phương của một số nguyên
1. Chứng minh rằng tích ba số nguyên dương liên tiếp không là lập phương của một số tự nhiên
2. CMR: A=\(\frac{1}{3}\left(11...1-33...3\right)00...0\)là lập phương của một số ( n chữ số 1, n chữ số 3 và n chữ số 0)
3. a) Cho a= 11...1 ( n chữ số 1 ), b= 1 00...0 5 ( n-1 chữ số 0). CMR: ab+1 là số chính phương.
b) Cho một dãy số có số hạng đầu là 16, các số hạng sau là số tạo thành bằng cách viết chèn số 15 vào chính giữa số hạng liền trước.
16, 1156, 111556,...
Cho dãy số 7,13,25,................... 3n(n-1)+7 (n thuộc N).CMr:
a) Trong 5 số hạng liên tiếp của dãy bao giờ cx tồn tại 1 bội của 25
b) Không có số hạng nào của dãy là lập phương của 1 số nguyên
ĐAng cần gấp
2) Cho một dãy số có số hạng đầu là 16 , các số hạng sau là số tạo thành bằng cách viết chèn số 15 vào chính giữa số hạng liền trước
16,1156,111556,….
CMR: mọi số hạng của dãy đều là số chính phuơng
3) CMR: ab+1 là số chính phuơng với a=11…12(11…1 là n số), b=11…14(11…1 là n số)
4) CMR với mọi số tự nhiên a, tốn tại số tự nhiên b sao cho ab+4 là số chính phương.
5)Cho a là số gồm 2n chữ số 1, b là số gồm n+1 chữ số 1, c là số gồm n chữ số 6. CMR a+b+c+8 là số chính phương
6)CMR tích 3 số nguyên dương liên tiếp không là lập phương của 1 số tự nhiên
Cho dãy số Un = 3(n2 + n)+7, n thuộc N*
Chứng minh rằng: Không có phần tử nào của dãy là lập phương của một số tự nhiên.
Cho dãy số : n, n + 1, n + 2, ... , 2n với n là số nguyên dương. Chứng minh trong dãy có ít nhất một lũy thừa bậc 2 của một số tự nhiên.
Bài2 Chứng minh ab+1 là số chính phương nếu
a, a=11...1 và b=100...05
n số 1 và n-1 số 0
b, a=11...12 và b=11...14
n số 1
Bài3 Cho a là số gồm 2n chữ số 1, b là số gồm n+1 chữ số 1, b là số gồm n chữ số 6. Chứng minh rằng a+b+c+8 là số chính phương
Bài4 Chứng minh số a=\(\frac{1}{3}\) (11...1-33...300...0) là lập phương của 1 số tự nhiên
( n chữ số 1, n chữ số 3, n chữ số 0)
Bài5 Cho 1 dãy số có số hạng đầu là 16, các số hạng sau là số tạo thành bằng cách chèn số 15 vào giữa số hạng liền trước:
Vd: 16 => 1156 => 111556 => 11115556 =>...
Chứng minh mọi số hạng của dãy đều là số chính phương