Chương II : Tam giác

TC

 Cho ΔABC vuông tại A, đường phân giác BE. Kẻ EH ⏊BC (H thuộc BC). Gọi K là 
giao điểm của AB và HE. Chứng minh rằng: 
a) ΔABE = ΔHBE 
b) BE là đường trung trực của đoạn thẳng AH. 
c) EK = EC 
d) AE < EC  
 

KS
14 tháng 7 2021 lúc 10:53

undefined

a) Xét hai tam giác vuông ΔABE và ΔHBE có:

ABE = HBE (BE là tia phân giác giả thiết)

BE cạnh chung

⇒ ΔABE = ΔHBE (cạnh huyền - góc nhọn)

Vậy ΔABE = ΔHBE

b) AB = HB (2 cạnh tương ứng)

⇒ B thuộc đường trung trực của đoạn AH (1)

AE=HE (2 cạnh tương ứng)

⇒ E thuộc đường trung trực của đoạn AH (2)

Từ (1) và (2) ⇒ BE là đường trung trực của đoạn AH

Vậy BE là đường trung trực của đoạn AH

c) Xét hai tam giác vuông ΔAEK và ΔHEC có:

AEK = HEC (đối đỉnh)

AE = HE (cmt)

⇒ ΔAEK = ΔHEC (cạnh góc vuông - góc nhọn)

⇒ EK = EC (2 cạnh tương ứng) (3)

Vậy EK = EC

d) Ta có: ΔAEK vuông tại A

⇒ K<A

⇒ AE<KE (4)

Từ (3) và (4) ⇒ AE<EC

Vậy AE<EC

Bình luận (0)
NT
14 tháng 7 2021 lúc 14:11

a) Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

\(\widehat{ABE}=\widehat{HBE}\)(BE là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔABE=ΔHBE(Cạnh huyền-góc nhọn)

b) Ta có: ΔABE=ΔHBE(cmt)

nên BA=BH(Hai cạnh tương ứng) và EA=EH(hai cạnh tương ứng)

Ta có: BA=BH(cmt)

nên B nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: EA=EH(cmt)

nên E nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra BE là đường trung trực của AH

Bình luận (0)
NT
14 tháng 7 2021 lúc 14:12

c) Xét ΔAEK vuông tại A và ΔHEC vuông tại H có

EA=EH(cmt)

\(\widehat{AEK}=\widehat{HEC}\)(hai góc đối đỉnh)

Do đó: ΔAEK=ΔHEC(Cạnh góc vuông-góc nhọn kề)

Suy ra: EK=EC(Hai cạnh tương ứng)

d) Ta có: EA=EH(cmt)

mà EH<EC(ΔEHC vuông tại H)

nên AE<CE

Bình luận (0)

Các câu hỏi tương tự
PC
Xem chi tiết
CX
Xem chi tiết
CX
Xem chi tiết
CX
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
CV
Xem chi tiết
HT
Xem chi tiết
VP
Xem chi tiết