Ôn tập Tam giác

PH

Cho ΔABC, trung tuyến AM. Trên tia AM lấy điểm N sao cho MN=AM

a) CN//AB

b) ΔABC=ΔNCB

c) Dựng ra phía ngoài ΔABC các Δ: ΔABD và ΔACE vuông cân tại A. CMR: BE=CD và BE⊥CD

d) AN=DE và AN⊥DE

e) Kẻ AH⊥BC. CMR: AH đi qua trung điểm của DE

BD
23 tháng 1 2020 lúc 22:30

a,Xét ΔAMB và ΔNMC có:

+AM=MN(gt)

+∠AMB=∠NMC(đối đỉnh)

+BM=MC(gt)

=> ΔAMB=ΔNMC(c.g.c)

=>∠ABM=∠MCN(2 cạnh tương ứng) mà 2 góc này ở vt so le trong của AB và CN

=> AB//CN(đpcm)

b,Từ ΔAMB=ΔNMC => AB=CN(2 cạnh tương ứng)

Xét ΔABC và ΔNCB có:

+AB=CN(cmt)

+∠ABC=∠BCN(cmt)

+BC cạnh chung

=> ΔABC=ΔNCB(c.g.c)

c,Ta có: ∠DAB=∠CAE(=90độ)

=> ∠DAB+∠BAC=∠CAE+∠BAC hay ∠DAC=∠BAE

Xét ΔDAC và ΔBAE có:

+DA=AB(gt)

+∠DAC=∠BAE(cmt)

+AC=AE(gt)

=>ΔDAC=ΔBAE(c.g.c)

=> DC=BE(2 cạnh tương ứng),∠ADC=∠ABE(2 góc tương ứng)

Gọi giao điểm của DC và BE là F

Có ΔADB vuông cân tại A

=>∠ADB+∠ABD=90độ

Lại có ∠ADC=∠ABE(cmt)

=>∠ADB-∠ADC+∠ABD+∠ABE=90độ hay ∠FDB+∠FBD=90độ

ΔFDB có ∠FDB+∠FBD=90độ => ∠DFB=90độ hay DC⊥EB

Bình luận (0)
 Khách vãng lai đã xóa