cho tam giác ABC nhọn , AB<AC nội tiếp đường tròn (O). Các đường cao BD và CE của tam giác ABC cắt nhau tại H. Gọi K là giao điểm của DE và CB.
a)CMR: Tứ giác BCDE nội tiếp
b) C/m : KB.KC=KE.KD
c) Gọi M là trung điểm của BC , AK cắt đường tròn (O) tại điểm thứ 2 N . C/m : 3 điểm M,H,N thẳng hàng
Cho tam giác ABC nhọn (AB > AC), nội tiếp đường tròn (O; R). Các tiếp tuyến tại B và C cắt nhau tại M. Gọi H là giao điểm của OM và BC. Từ M kẻ đường thẳng song song với AC, đường thẳng này cắt (O) tại E và F (E thuộc cung nhỏ BC), cắt BC tại I, cắt AB tại K
a) Chứng minh: MO vuông góc BC và ME.MF = MH.MO
b) Chứng minh rằng tứ giác MBKC là tứ giác nội tiếp. Từ đó suy ra 5 điểm M, B, K, O, C cùng thuộc một đường tròn
c) Đường thẳng OK cắt O tại N và P (N thuộc cung nhỏ AC). Đường thẳng PI cắt O tại Q (Q khác P). Chứng minh ba điểm M, N, Q thẳng hàng
Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.
a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp
b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN
Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.
a) C/m: MOCD là hình bình hành
b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.
Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).
a) C/m: MI là tiếp tuyến của (O)
b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O) và AB<AC. Các tiếp tuyến tại B và C của (O) cắt nhau tại D. Qua D kẻ đường thẳng song song với AB cắt BC,AC tại M,N.
1) Chứng minh: Tam giác ANB cân ?
2) Đường thẳng AD cắt đường tròn (O) tại I, BI cắt DM tại K. Trên đoạn BD lấy điểm P sao cho IP//DN. AP cắt BC tại Q. Gọi G là trung điểm DK. CMR: Ba điểm Q,I,G thẳng hàng ?
3) AD căt BC ở S. Gọi H là hình chiếu của B trên AD. CMR tâm đường tròn (HCS) thuộc 1 đường thẳng cố định ?
Bài 1: Cho (O;R) và điểm A nằm ngoài (O) sao cho OA=3R. Từ A vẽ 2 tiếp tuyến AB; AC với (O)
a) CMR: Tứ giác OBAC nội tiếp
b) CMR: OA ⊥ BC
c) Từ B vẽ đường thẳng // AC cắt (O) tại D; AD cắt (O) tại E. Tính AD.AE theo R
d) Tia BE cắt AC tại F. CMR: F là trung điểm AC
Bài 2: Cho ΔABC nhọn nội tiếp (O); hai điểm B;C cố định. Điểm A di chuyển trên cung lớn BC. Gọi H là hình chiếu của A xuống BC. Gọi M;N lần lượt là hình chiếu của B;C đến đường kính AD
a) C/m các điểm A;B;H;M cùng thuộc một đường tròn
b) C/m ΔHMN ∽ ΔABC
c) Gọi I;E lần lượt là trung điểm BC và AB. C/m IE là trung trực của HM
Cho đường tròn tâm O đường kính AB cố định, C là điểm thuộc(O) sao cho AC<AB. Các tiếp tuyến của đường tròn (O) tại B và C cắt nhau tại D.Từ C kẻ đường thẳng song song với BD và cắt AB tại H, gọi F là giao điểm của OD và BC
1, CMR CHOF nội tiếp
3, tiếp tuyến tại A cắt DC tại F, gọi M,N lần lượt là giao điểm của AD với BC và đường tròn tâm O . CMR
MN.AD=AM.DN
cho đường tròn O , từ một điểm S nằm ngoài O , kẻ tiếp tuyến SB và SC với đường tròn O , B và C là các tiếp điểm. Kẻ đường thẳng SO cắt BC tại D và cắt cung lớn BC của đường tròn O tại A. kẻ CH vuông góc với AB tại H, M là trung điểm của CH. AM cắt đường tròn O tại điểm thứ hai là N. CM tứ giác DMCN nội tiếp
Cho đường tròn (O;R) đường kính AB. Gọi C là điểm thuộc đường tròn (O) sao cho AC > BC
a) Chứng minh ΔABC vuông
b) Tiếp tuyến tại A và C của (O) cắt nhau tại D.
c) Gọi H là giao điểm của OD và AC. Chứng minh 4HO.HD = AC^2
d) Qua O vẽ đường thẳng vuông góc với BD tại K cắt tia AC tại M. Chứng minh MB là tiếp tuyến của đường tròn (O).
giups minh cau 1d, 2c , cam on nhieu
1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.
a) Chứng minh AEHF nội tiếp
b) Chứng minh EC là tia phân giác của góc DEF
c) Đường thẳng EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MD
d) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của (O)
e) Đường thẳng qua D song song với MF, cắt AB và AC lần lượt tại K và L. Chứng minh : M, K, L, O cùng thuộc một đường tròn.
2. Từ một điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB và AC đến (O) (B và C là các tiếp điểm) và một cát tuyến ADE không đi qua tâm O (D nằm giữa A và E), gọi I là trung điểm của DE.
a) Chứng minh 5 điểm A;B;O;I;C cùng nằm trên một đường tròn suy ra IA là phân giác của góc BIC
b) BC cắt AE tại K. Chứng minh KA.KI=KD.KE
c) Qua C kẻ đường thẳng song với AB, đường này cắt các đướng thẳng BE, BD lần lượt tại P và Q. Chứng minh C là trung điểm của PQ.
d) Đường thẳng OI cắt đường tròn (O) tại S và H. Đường thẳng HK cắt (O) tại điểm thứ hai là T. Chứng minh 3 điểm A, T, S thẳng hàng
Cho tam giác nhọn ABC nội tiếp (O; R). Tiếp tuyến tại B và C của đường tròn cắt nhau tại. Đoạn thẳng AT cắt đường tròn tại điểm thứ 2 là D (D khác A). CMR: 2 đường phân giác góc BAC và đường thẳng BC đồng quy tại 1 điểm