Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho tam giác ABC.Gọi H,G,O lần lượt là trực tâm trong tâm,tâm đường tròn ngoại tiếp của tam giác ABC.Tia AG cắt BC tại M,gọi I là trung điểm của AG và K là trung diểm của GH.
CMR:
a)OM=\(\frac{1}{2}\)AH
b) GO=GK
c) H,G,O thẳng hàng
d)GH= 2GO
(Vẽ hình luôn ạ)
Cho tam giác ABC có 3 góc nhọn, trực tâm H. Gọi I,P,M lần lượt là trung điểm của AB,AC,BC.
a, IPMB là hình gì?
b, đường thẳng vuông góc với AB kẻ từ B cắt đường thẳng vuông góc với AC kẻ từ C tại D; O là trung điểm của AD. CMR OM vuông góc với BC và 2OM=AH
c, Gọi G là trọng tâm của tam giác ABC. CMR 3 điểm H,G,O thẳng hàng.
Cho tam giác ABC. Gọi H là trực tâm của tam giác, G là trọng tâm của tam giác, O là tâm đường tròn ngoại tiếp của tam giác. Chứng minh rằng đoạn thẳng AH gấp 2 lần khoảng cách từ O đến BC.
Cho tam giác ABC nhọn có trực tâm H. Gọi M,N lần lượt là trung điểm của BC,AC. Gọi O là tâm đường tròn ngoại tiếp tam giác ABC. Chứng minh AH=2MO, Bh=2NO
CMR trong 1 tam giác có trọng tâm G,trực tâm H,tâm đường tròn ngoại tiếp tam giác là O thì H,G,O thẳng hàng
cho tam giác ABc có trực tâm AH. Gọi M và N lần lượt là trung điểm của BC và AC. Gọi O là giao điểm của các đường trung trực của tam giác và G là trọng tâm của tam giác. Chứng minh:
a) ΔOMN∼ΔHAB⇒AH=2OMΔOMN∼ΔHAB⇒AH=2OM
b) ΔHAG∼ΔOMGΔHAG∼ΔOMG
c) H, G, O thẳng hàng, GH = 2.GO
Cho tam giác ABC, có trực tâm H. Gọi M , N lần lượt là trung điểm của BC , AC. Gọi O là giao điểm cua các đường trung trực của tam giác.
a. CM. \(\Delta OMN\)\(~\)\(\Delta HAB\)
b. So sánh AH và OM
c. Gọi G là trọng tâm của tam giác .CMR: 3 điểm H , G , O thẳng hàng
Cho tam giác ABC nhọn có trực tâm H. Gọi M, N theo thứ tự là trung điểm của BC, AC. Gọi O là giao điểm của các đường trung trực của BC, AC.
a) CMR: tam giác OMN đồng dạng với tam giác HAB. Tính tỉ số đồng dạng
b) Gọi G là trọng tâm của tam giác ABC
CMR: tam giác HAG đồng dạng với tam giác OMG
c)CMR: 3 điểm H, G, O thẳng hàng và GH = 2.GO
Cho tam giác ABC, O là giao điểm các đường trung trực, H là trực tâm, M là trung điểm cạnh BC, gọi K là điểm đối xứng của H qua M. CMR:
a) OM=1/2AH
b)Gọi G là trọng tâm tam giác ABC.Chứng minh H,G,O thẳng hàng.