Cho ΔABC có trọng tâm G, H là điểm đối xứng với B qua G, M là trung điểm BC.
C/M 1) \(\overrightarrow{AH}\) = \(\dfrac{2}{3}\overrightarrow{AC}-\dfrac{1}{3}\overrightarrow{AB}\)
2) \(\overrightarrow{CH}=-\dfrac{1}{3}\overrightarrow{AB}-\dfrac{1}{3}\overrightarrow{AC}\)
3) \(\overrightarrow{MH}=\dfrac{1}{6}\overrightarrow{AC}-\dfrac{5}{6}\overrightarrow{AB}\)
Cho ΔABC có trung tuyến AD, trọng tâm G. Một đường thẳng qua G cắt AB, AC tại M và N
Khẳng định nào sau đây đúng ?
A. \(\overrightarrow{AM}.\overrightarrow{AN}=\dfrac{1}{2}\overrightarrow{AN}.\overrightarrow{MB}+\dfrac{2}{3}\overrightarrow{AM}.\overrightarrow{NC}\)
B. \(\overrightarrow{AM}.\overrightarrow{AN}=\dfrac{2}{3}\overrightarrow{AN}.\overrightarrow{MB}+\dfrac{2}{3}\overrightarrow{AM}.\overrightarrow{NC}\)
C.\(\overrightarrow{AM}.\overrightarrow{AN}=\dfrac{3}{2}\overrightarrow{AN}.\overrightarrow{MB}+\dfrac{3}{2}\overrightarrow{AM}.\overrightarrow{NC}\)
D. \(\overrightarrow{AM}.\overrightarrow{AN}=\overrightarrow{AN}.\overrightarrow{MB}+\overrightarrow{AM}.\overrightarrow{NC}\)
Cho tam giác ABC có AB=5, BC=7,AC=8
a) Từ đẳng thức \(\overrightarrow{AC}-\overrightarrow{AB}=\overrightarrow{BC}\) ,Chứng minh công thức \(2\overrightarrow{AB}.\overrightarrow{AC}=\) AB2+AC2-BC2
Tính \(\overrightarrow{AB}.\overrightarrow{AC}\) , rồi suay ra giá trị của góc A
b) Tính \(\overrightarrow{CA}.\overrightarrow{CB}\)
Cho tam giác ABC vuông tại A có AB=a , BC =2a .Gọi M ,N lần lượt là trung điểm của AC , BC .
a) Tính số đó các góc của tam giác ABC .
b) Xác định các góc( \(\overrightarrow{AB},\overrightarrow{MN}\)),
(\(\overrightarrow{MN},\overrightarrow{MB}\)) , (\(\overrightarrow{AB},\overrightarrow{BC}\)) ,( \(\overrightarrow{NM},\overrightarrow{BC}\))
c) Tính tích vô hướng : \(\overrightarrow{AB}.\overrightarrow{AC},\overrightarrow{BC.}\overrightarrow{AC},\overrightarrow{MN.}\overrightarrow{BC},\overrightarrow{BN}.\overrightarrow{AC},\overrightarrow{AN.}\overrightarrow{BC}\)
Cho hình vuông ABCD cạnh a . Tính giá trị các biểu thức sau:
a) \(\overrightarrow{AB}.\overrightarrow{AC}\)
b)\(\left(\overrightarrow{AB}+\overrightarrow{AD}\right)\left(\overrightarrow{BD}+\overrightarrow{BC}\right)\)
c)\(\overrightarrow{AB}.\overrightarrow{BD}\)
d) \(\left(\overrightarrow{AC}-\overrightarrow{AB}\right)\left(2\overrightarrow{AD}-\overrightarrow{AB}\right)\)
e) \(\left(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}\right)\left(\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}\right)\)
1. cho tam giác ABC đều , G là trọng tâm . Xác định góc giữa các vecto sau : \(\left(\overrightarrow{AB},\overrightarrow{AC}\right)\) , \(\left(\overrightarrow{AB},\overrightarrow{CA}\right)\) , \(\left(\overrightarrow{BA},\overrightarrow{AG}\right)\) , \(\left(\overrightarrow{GA},\overrightarrow{GC}\right)\) , \(\left(\overrightarrow{BG},\overrightarrow{AC}\right)\)
1. Cho tam giác ABC vuông tại A , AB = 7 , AC = 10 . Tính cos , sin của \(\left(\overrightarrow{AB},\overrightarrow{AC}\right)\) , \(\left(\overrightarrow{AB},\overrightarrow{BC}\right)\) , \(\left(\overrightarrow{AB},\overrightarrow{CB}\right)\)
cho tam giác ABC vuông tại A, biết \(\overrightarrow{AB}.\overrightarrow{CB}=4;\overrightarrow{AC}.\overrightarrow{BC}=9\) .Tìm AB,AC,BC
Cho tam giác ABCcó G là trọng tâm. Gọi H là chân đường cao hạ từ A sao cho \(\overrightarrow{BH}=\frac{1}{3}\overrightarrow{HC}\). Điểm M di động nằm trên BC sao cho \(\overrightarrow{BM}=x\overrightarrow{BC}\). Tìm x sao cho độdài của vector \(\overrightarrow{MA}+\overrightarrow{GC}\) đạt giá trị nhỏ nhất.