TN

Cho ΔABC cân tại A có AB =AC =13cm ,BC =10cm .Tính cos góc A.

 

HN
12 tháng 8 2016 lúc 9:07

A B C H K Từ A kẻ đường cao AH vuông góc với BC tại H.

Từ B kẻ đường cao BK vuông góc với AC tại K

Khi đó, ta có BH = HC = 1/2BC = 5 (cm)

\(AH=\sqrt{AC^2-\left(\frac{BC}{2}\right)^2}=13^2-5^2=12\left(cm\right)\)

Dễ thấy hai tam giác HCA và KCB đồng dạng (g.g)

Suy ra \(\frac{HC}{KC}=\frac{AC}{BC}\) hay \(\frac{5}{KC}=\frac{13}{10}\Rightarrow KC=\frac{50}{13}\Rightarrow AK=AC-KC=13-\frac{50}{13}=\frac{119}{13}\left(cm\right)\)

Xét tam giác AKB, ta có : 

\(CosA=\frac{AK}{AC}=\frac{\frac{119}{13}}{13}=\frac{119}{169}\)

Bình luận (0)
LH
12 tháng 8 2016 lúc 8:46

kẽ đường cao AH,tam giác ABC cân tại A=>AH cũng là trung tuyến của BC=>BH=1/2BC=5cm 
xét tam giác AHB theo DL Pitago ta tính dc AH=12cm 
=>cosBAH=AH/AB=12/13 
=>cosBAC=2*12/13=24/13(vì AH là fân giác góc BAC)

Bình luận (0)
NM
12 tháng 8 2016 lúc 8:47

Kẻ AH vuông góc với BC. 
Vì ABC là tam giác cân nên AH là trung tuyến ứng với BC. 
=> HB = HC = BC/2 = 10/2=5 cm. 
cos C = 5/13 => Góc C = 67 độ 38 phút. 
Vì ABC là tam giác cân nên góc B = Góc C = 67 độ 23 phút. 
=> Góc A = 180 - 2 . 67 độ 23 phút = 45 độ 14 phút 
=> cos A = 119/169

Bình luận (1)

Các câu hỏi tương tự
TS
Xem chi tiết
WR
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
II
Xem chi tiết
TK
Xem chi tiết
TB
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết