Bài 6: Cho ∠xAy, lấy điểm B trên tia Ax, điểm D trên tia Ay sao cho AB = AD. Trên tia Bx lấy điểm E, trên tia Dy lấy điểm C sao cho BE = DC. Chứng minh ΔABC = ΔADE.
Bài 7: Cho đoạn thẳng AB có M là trung điểm. Qua M kẻ đường thẳng d vuông góc với AB. Lấy C ∈ d (C khác M). Chứng minh CM là tia phân giác của ∠ACB.
Bài 8: Cho ΔABC có AB = AC, phân giác AM (M ∈ BC).
Chứng minh: a) ΔABM = ΔACM. b) M là trung điểm của BC và AM ⊥ BC.
Bài 9: Cho ΔABC, trên nửa mặt phẳng bờ AC không chứa điểm B, lấy điểm D sao cho AD // BC và AD = BC. Chứng minh: a) ΔABC = ΔCDA. b) AB // CD và ΔABD = ΔCDB.
Bài 10: Cho ΔABC có ∠A = 90 độ, trên cạnh BC lấy điểm E sao cho BA = BE. Tia phân giác ∠B cắt AC ở D.
a) Chứng minh: ΔABD = ΔEBD. b) Chứng minh: DA = DE. c) Tính số đo ∠BED.
Bài 11: Cho ΔABD, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a) ΔABM = ΔECM. b) AB = CE và AC // BE.
(* Chú ý: Δ là tam giác, ∠ là góc, ⊥ là vuông góc, // là song song.)
Cho ΔABC , góc A =90 độ , góc B=60độ .
a, So sánh AD và BD
b, Trên BC lấy D sao cho BD=AB . Qua D dựng đường vuông góc với BC cắt tia đối của AB tại E . Chứng minh : ΔABC=ΔDBE
c, H là giao điểm của AC và ED . Chứng minh : BH là phân giác của góc ABC
d, Qua B vẽ đường thẳng vuông góc AB cắt ED tại K . Chứng minh : ΔHBK đều
Cho tam giác ABC có AB = AC và BC < AB, M là trung điểm BC.
a) Chứng minh AM là tia phân giác góc BAC.
b) Trên cạnh AB lấy điểm D sao cho CB = CD. Tia phân giác góc BCD cắt BD tại N. Chứng minh CN vuông góc với BD.
c) Trên tia đối tia CA lấy điểm E sao cho AD = CE. Chứng minh ˆ B C E = ˆ A D C .
d) Chứng minh BA = BE.
Cho tam giác ABC vuông góc tại A trên cạnh BC lấy điểm E sao cho BE=BA. Tia phjan6 giác của góc B cắt AC tại D
a/ Chứng minh tam giác ABD =tam giác EBD
b/ DE vuông góc BC
c/ trên tia đối của tia AC lấy điểm M sao cho AM=AB trên cạnh AB lấy điểm N sao cho AN = AD. Chứng minh tam giác ABD=tam giác AMN
d/ gọi H là trung điểm MN , K là trung điểm BD . Chứng minh góc HAK = 90 độ
Cho tam giác ABC vuông tại A có góc B = 60o. Trên cạnh BC lấy điểm D sao cho BA = BD. Tia phân giác của góc B cắt AC tại I
a) Chứng minh tam giác BAD đều
b) Chứng minh tam giác IBC cân
c) Chứng minh D là trung điểm của BC
d) Cho AB = 6 cm. Tính BC, AC
Cho tam giác ABC cân tại A có BC < AB, gọi M là trung điểm của BC.
a) Chứng minh ABM = ACM từ đó suy ra AM là tia phân giác của góc BAC.
b) Trên cạnh AB lấy điểm D sao cho CB = CD. Kẻ tia phân giác của góc BCD, tia này cắt
cạnh BD tại N. Chứng minh CN BD
c) Trên tia đối của tia CA lấy điểm E sao cho AD = CE. Chứng minh BCEADC
d) Chứng minh: BA = BE.
Cho tam giác ABC vuông tại A có AB=6cm; BC=10cm.
a) Tính độ dài cạnh AC và so sánh các góc của tam giác ABC
b) Trên tia đối của tia AB lấy điểm D sao cho A là trung điểm của đoạn thẳng BD. Chứng minh tam giác BCD cân
c) Gọi K là trung điểm của cạnh BC, đg thẳng DK cắt cạnh AC tại M. tính MC.
d) Đường trung trực d của đoạn thẳng AC cắt đường thẳng DC tại Q. Chứng minh 3 điểm B, M, Q thẳng hàng
1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.
a. Chứng minh: ∆BAD = ∆BED
b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE
c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC
2.
Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D.
a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC
b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.
c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.
3.
Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.
a.Chứng minh: ∆ABE = ∆MBE.
b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,
c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC
4
Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.
a) Chứng minh ∆ABM = ∆ACM
b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.
c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng
d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.