Cho Q(x)=ax2+bx+c. Chứng minh rằng Q(1).Q(2) là 1 số không dương biết 2a+c=0
Cho đa thức f(x) = \(ax^2+bx+c\) với a ,b, c là các số thực. Biết rằng f(0) ; f(1) ; f(2) có giá trị nguyên . Chứng minh rằng 2a , 2b có giá trị nguyên
Cho đa thức Q(x) = ax2+bx+c
a. Biết 5a+b+2c=0. Chứng minh rằng: Q(2).Q(1)\(\le\)0.
b. Biết Q(x)=0 với mọi x. Chứng minh rằng a=b=c=0.
1) cho đa thức f(x)=\(ax^2+bx+c\). Biết rằng các giá trị của đa thức tại x=0, x=1, x=-1 đều là những số nguyên. Chứng tỏ rằng 2a, a+b, c là những số nguyên.
2) Cho đa thức f(x)=\(1+x^3+x^5+x^7+...+x^{101}\). Tính f(1), f(-1)
Cho đa thức : Q(x) =ax2+bx+c
a, Biết 5a+b+2c=0. Chứng tỏ rằng Q(2).Q(-1)</
b, Biết Q(x) =o . Chứng minh rằng a=b=c=0
1. Cho đa thức A(x) = ax2 + bx +c (với a,b,c là các hằng số). Chứng minh rằng
a) Nếu a+b+c=0 thì x=1 là một nghiệm của đa thức A(x)
b) Nếu a-b+c=0 thì x=-1 là một nghiệm của đa thức A(x)
2. Cho hai đa thức A(x) và Q(x) đều có nghiệm. Có thể khẳng định được rằng đa thức P(x) + Q(x) luôn có nghiệm hay không? Minh họa cho câu trả lời của em bằng một ví dụ.
3. Cho hai đa thức M(x) và N(x) có cùng một nghiệm. Có thể khẳng định được rằng đa thức M(x) + N(x) luôn có nghiệm hay không? Cho ví dụ minh họa cho câu trả lời của em.
Giúp mình với, mình cần gấp.
1. Cho đa thức A(x) = ax2 + bx +c (với a,b,c là các hằng số). Chứng minh rằng
a) Nếu a+b+c=0 thì x=1 là một nghiệm của đa thức A(x)
b) Nếu a-b+c=0 thì x=-1 là một nghiệm của đa thức A(x)
2. Cho hai đa thức A(x) và Q(x) đều có nghiệm. Có thể khẳng định được rằng đa thức P(x) + Q(x) luôn có nghiệm hay không? Minh họa cho câu trả lời của em bằng một ví dụ.
3. Cho hai đa thức M(x) và N(x) có cùng một nghiệm. Có thể khẳng định được rằng đa thức M(x) + N(x) luôn có nghiệm hay không? Cho ví dụ minh họa cho câu trả lời của em.
Giúp mình với, mình cần gấp.
cho 2 đa thức: P(x)=ax+b và Q(x)= bx+a (a,b khác 0). Chứng minh rằng :nếu nghiệm của p(x) là số dương thì nghiệm của Q(x) cũng là số dương
Cho đa thức P(x) = ax^2+bx+c . Biết 9a-b+3c = 0 . Chứng minh rằng trong 3 số P(-1) , P(-2) , P(2) có ít nhất một số không âm , một số không dương