AH

Cho đa thức P(x) thõa mãn:(x+1).P(x-1)+x.P(x-3)=0

 Chứng minh P(x) có ít nhất 2 nghiệm.

DH
10 tháng 5 2017 lúc 12:32

\(\left(x+1\right).P\left(x-1\right)+x.P\left(x-3\right)=0\)

Thay x = 0 vào đẳng thức trên ta được :

\(\left(0+1\right).P\left(0-1\right)+0.P\left(0-3\right)=0\)

\(\Leftrightarrow1.P\left(-1\right)=0\)

\(\Rightarrow P\left(-1\right)=0\) => x = - 1 là nghiệm của P(x) (1)

Thay x = - 1 vào đẳng thức trên ta được :

\(\left(-1+1\right).P\left(-1-1\right)+\left(-1\right)P\left(-1-3\right)=0\)

\(\Rightarrow-P\left(-4\right)=0\)

\(\Rightarrow P\left(-4\right)=0\) => x = - 4 là nghiệm của P(x) (2)

Từ (1) ; (2) => P(x) có ít nhất 2 nghiệm (đpcm)

Bình luận (0)
TD
2 tháng 5 2018 lúc 18:45

 Với x = 0 Ta có : 

0.P ( 0 + 2 ) - ( 0 - 3 ) .P ( 0 - 1 ) = 0 \(\Leftrightarrow\)0 + 3P( -1 ) = 0 \(\Leftrightarrow\)P ( -1 ) = 0

\(\Rightarrow\)x = -1 là một nghiệm của đa thức P ( x )

Với x=3 Ta có

3.P ( 3 + 2  ) - ( 3 - 3 ) .P ( 3 - 1 ) = 0\(\Leftrightarrow\)0 + 3P( 5 ) = 0 - 0.P(2) = 0 \(\Leftrightarrow\)3.P( 5 ) = 0\(\Leftrightarrow\)P( 5 ) = 0

\(\Rightarrow\)x=5 là một nghiệm của đa thức P ( x )

Vậy đa thức P ( x ) có ít nhất hai nghiệm là -1 va 0

Bình luận (0)

Các câu hỏi tương tự
PL
Xem chi tiết
NU
Xem chi tiết
DN
Xem chi tiết
MA
Xem chi tiết
TD
Xem chi tiết
SK
Xem chi tiết
VN
Xem chi tiết
KT
Xem chi tiết
HN
Xem chi tiết