\(xf\left(x+1\right)=\left(x+2\right)f\left(x\right)\)(1)
Thế \(x=0\)vào (1) ta có:
\(0f\left(1\right)=2f\left(0\right)\Rightarrow f\left(0\right)=0\)
Do đó \(0\)là một nghiệm của đa thức \(f\left(x\right)\).
Thế \(x=-2\)vào (1) ta có:
\(-2f\left(-1\right)=0f\left(-2\right)\Rightarrow f\left(-1\right)=0\)
Do đó \(-1\)là một nghiệm của đa thức \(f\left(x\right)\).