H24

Cho đa thức P(x) có các hệ số nguyên và a, b, c là ba số nguyên thoả mãn P(a) = 1, P(b) = 2, P(c) = 3. Chứng minh rằng a + c = 2b

IT
27 tháng 8 2021 lúc 14:23

ta có \(a-b|P\left(a\right)-P\left(b\right).màP\left(b\right)=-1\) nên suy ra \(\left[{}\begin{matrix}a-b=1\\a-b=-1\end{matrix}\right.\)

tương tự ta cũng được \(\left[{}\begin{matrix}c-b=1\\c-b=-1\end{matrix}\right.\) rõ ràng a≠c(do P(a)≠P(a)) nên a-b≠c-b

từ đây ta được

\(\left[{}\begin{matrix}a-b=1\\c-b=-1\end{matrix}\right.V\left[{}\begin{matrix}a-b=-1\\c-b=1\end{matrix}\right.\)

suy ra \(a+c=2b\) 

vậy ta được đpcm

Bình luận (1)

Các câu hỏi tương tự
DP
Xem chi tiết
H24
Xem chi tiết
HL
Xem chi tiết
H24
Xem chi tiết
PT
Xem chi tiết
DH
Xem chi tiết
HL
Xem chi tiết
HD
Xem chi tiết
TF
Xem chi tiết