TH

cho đa thức p(x)= 2x⁴+3x²+1 a) Tính P(0); P(1); P(-2) b) Chứng tỏ rằng P(a)>0 với mọi a thuộc R

TM
4 tháng 4 2023 lúc 22:33

a) \(P\left(0\right)=2.0^4+3.0^2+1=1\)

\(P\left(1\right)=2.1^4+3.1^2+1=6\)

\(P\left(-2\right)=2.\left(-2\right)^4+3.\left(-2\right)^2+1=45\)

b) Ta có : \(x^4\ge0\) và \(x^2\ge0\) với mọi x thuộc R, suy ra \(2x^4,3x^2\ge0\) với mọi x thuộc R.

Cộng lại ta được \(2x^4+3x^2\ge0\)

Hay \(P\left(x\right)=2x^4+3x^2+1\ge1>0\). Vì vậy, với mọi x = a thì \(P\left(a\right)>0\) với mọi a thuộc R.

Bình luận (0)

Các câu hỏi tương tự
UN
Xem chi tiết
RT
Xem chi tiết
NA
Xem chi tiết
MP
Xem chi tiết
HT
Xem chi tiết
NM
Xem chi tiết
KS
Xem chi tiết
AC
Xem chi tiết
BD
Xem chi tiết