ML

Cho đa thức: f(x)=x4+ax3+bx2+cx+df(x)=x4+ax3+bx2+cx+d ( với a, b, c, d là các số thực). Biết f(1)=10; f(2)=20; f(3)=30. Tính giá trị của biểu thức: A=f(9)+f(-5

)

H24
20 tháng 11 2021 lúc 16:06

Đặt \(g\left(x\right)=f\left(x\right)-10\) (bậc 4)

\(\Leftrightarrow\left\{{}\begin{matrix}g\left(1\right)=0\\g\left(2\right)=0\\g\left(3\right)=0\end{matrix}\right.\Leftrightarrow g\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-m\right)\) (m là hằng số)

\(\Leftrightarrow f\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-m\right)-10\\ \Leftrightarrow f\left(9\right)=8\cdot7\cdot6\left(9-m\right)-10=336\left(9-m\right)-10\\ f\left(-5\right)=\left(-6\right)\left(-7\right)\left(-8\right)\left(-5-m\right)-10=336\left(m+5\right)-10\)

Vậy \(A=336\left(9-m\right)+336\left(m+5\right)-20=4684\)

Chúc bạn hok tốt <3

Bình luận (0)

Các câu hỏi tương tự
PP
Xem chi tiết
TH
Xem chi tiết
H24
Xem chi tiết
TB
Xem chi tiết
8H
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
BM
Xem chi tiết
MA
Xem chi tiết