1)cho f(x)=ax^3+bx^2+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c.Chứng minh rằng f(1).f(-2) là bình phương của một số nguyên.
2)cho đa thức f(x)=ax^2+bx+c với a,b,c là hằng số.Hãy xác định a,b,c biết f(1)=4,f(-1)=8 và a-c=4
3)cho f(x)=ax^3+4x(x^2-1)+8;g(x)=x^3-4x(bx-1)+c-3.Xác định a,b,c để f(x)=g(x).
4)cho f(x)=cx^2+bx+a và g(x)=ax^2+bx+c.
cmr nếu Xo là nghiệm của f(x) thì 1/Xo là nghiệm của g(x)
5)cho đa thức f(x) thỏa mãn xf(x+2)=(x^2-9)f(x).cmr đa thức f(x) có ít nhất 3 nghiệm
6)tính f(2) biết f(x)+(x+1)f(-x)=x+2
a)xác định a để nghiệm của đa thức f x = ax - 4 Cũng là nghiệm của đa thức g(x) = x^2 trừ x = 2 .
b)cho f(x) = ax^3 = bx^2 = cx = d trong đó A,B,C,D là hàm số và thỏa mãn b + 3 a + c. chứng tỏ rằng F(1) = F (-2)
cho đa thức f(x)=ax^3+bx^2+cx+d. tìm mối liên hệ của a, b,c ,d để đa thức f(x) có 2 nghiệm là -2 và 2
Biết đa thức f(x)=ax^3+bx^2+cx+d(với a khác 0) có hai nghiệm là 1 và -1. Tìm nghiệm thứ 3 của đa thức f(x)?
a)xác định a để nghiệm của đa thức f x = ax - 4 Cũng là nghiệm của đa thức g(x) = x^2 trừ x = 2 .
b)cho f(x) = ax^3 = bx^2 = cx = d trong đó A,B,C,D là hàm số và thỏa mãn b + 3 a + c. chứng tỏ rằng F(1) = F (-2)
a)cho đa thức f(x)=ax+b.Tìm điều kiện của a và b để f(7)=f(2)+f(3)
b) Tìm nghiệm của P(x)=(x-2).(2x+5)
c) Tìm hệ số a của P(x)= x^4+ax^2-4.
Biết rằng, đa thức này có 1 nghiệm là -2
Cho hai đa thức sau:
f(x)=(x^2+1)(x-1)
g(x)=x^3+ax^2+bx+2
xác định a và b biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)
Cho đa thức f(x)=ax^2+bx+c . Tìm a,b,c biết
f(x) có hai nghiệm x=2 và x=3
Cho hai đa thức sau:
f(x)=(x+1)(x-1)
g(x)=x^3+ax^2+bx+2
xác định a và b biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)