Violympic toán 8

NH

Cho đa thức f(x)=\(\frac{x^5}{30}-\frac{x^3}{6}+\frac{2x}{15}\)

Chứng minh rằng f(x) nhận giá trị nguyên khác 67 với mọi giá trị nguyên x

NL
4 tháng 4 2019 lúc 16:23

\(f\left(x\right)=\frac{x^5-5x^3+4x}{30}=\frac{x\left(x^4-5x^2+4\right)}{30}=\frac{x\left(x^2-1\right)\left(x^2-4\right)}{30}\)

\(f\left(x\right)=\frac{\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)}{30}=\frac{a}{30}\)

Với x nguyên, do \(a=\left(x-2\right)\left(x-2\right)x\left(x+1\right)\left(x+2\right)\) là tích của 5 số tự nhiên liên tiếp nên \(a⋮120\Rightarrow a⋮30\Rightarrow f\left(x\right)\) nguyên

Cũng do \(a⋮120\Rightarrow a=120k\Rightarrow f\left(x\right)=\frac{120k}{30}=4k⋮4\)

\(67⋮̸4\Rightarrow f\left(x\right)\ne67\) \(\forall x\) nguyên

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
LN
Xem chi tiết
PT
Xem chi tiết
NS
Xem chi tiết