Bài 1: Phân thức đại số.

NK

Cho đa thức F(x)=2x^3 - 3ax^2 + 2x + b

Xác định a và b để F(x) chia hết (x - 1)và (x + 2)

H24
29 tháng 1 2019 lúc 20:16

Định lí Bê-du: Số dư của phép chia đa thức cho nhị thức bằng giá trị của tại

Để F(x) chia hết cho (x-1) thì F(1)=0\(\Rightarrow2.1^3-3a.1^2+2.1+b\)\(=2-3a+2+b=0\Leftrightarrow-3a+b=-4\left(1\right)\)

Để F(x) chia hết cho (x+2) thì F(-2)=0\(\Rightarrow2.\left(-2\right)^3-3a\left(-2\right)^2+2\left(-2\right)+b\)\(=-16-12a-4+b=0\Rightarrow-12a+b=20\left(2\right)\)

Từ (1) và (2), ta có hpt:\(\left\{{}\begin{matrix}-3a+b=-4\\-12a+b=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{-8}{3}\\b=-12\end{matrix}\right.\)

Vậy với \(a=\dfrac{-8}{3},b=-12\) thì F(x) chia hết (x - 1)và (x + 2).

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết
LL
Xem chi tiết
SK
Xem chi tiết
NM
Xem chi tiết